Analysis of port institutional, economic, social and environmental dimensions using artificial intelligence
Ports are drivers, but at the same time they are immersed in the processes of globalization of societies. That is why they are not alien to the potential of data mining methodologies, which try to discover patterns in large volumes of data sets such as those handled in the port area: Data mining is...
Guardado en:
| Autores principales: | , , , |
|---|---|
| Formato: | Artículo publishedVersion |
| Lenguaje: | Español |
| Publicado: |
Facultad de Filosofía y Letras, Universidad de Buenos Aires
2018
|
| Materias: | |
| Acceso en línea: | https://revistascientificas.filo.uba.ar/index.php/rtt/article/view/4937 https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=transter&d=4937_oai |
| Aporte de: |
| id |
I28-R145-4937_oai |
|---|---|
| record_format |
dspace |
| spelling |
I28-R145-4937_oai2025-11-17 Molina Serrano, Beatriz González-Cancelas, Nicoletta Soler-Flores, Francisco Camarero Orive, Alberto 2018-05-29 Ports are drivers, but at the same time they are immersed in the processes of globalization of societies. That is why they are not alien to the potential of data mining methodologies, which try to discover patterns in large volumes of data sets such as those handled in the port area: Data mining is a discipline linked to the artificial intelligence that, applied in a port environment, makes it possible to find new tools to increase port sustainability. This article aims to analyze port sustainability through the relationships established between sustainability variables, using artificial intelligence techniques such as Bayesian networks. The main conclusion drawn from the analysis is that the fundamental pillar of port sustainability is the institutional dimension. Los puertos son impulsores, pero a la vez están inmersos en los procesos de globalización de las sociedades. Es por ello que no son ajenos a la potencialidad de las metodologías de minería de datos, las cuales intentan descubrir patrones en grandes volúmenes de conjuntos de datos como los que se manejan en el ámbito portuario: La minería de datos es una disciplina ligada a la inteligencia artificial que, aplicado en un entorno portuario, posibilita encontrar nuevas herramientas para aumentar la sostenibilidad portuaria. Este artículo pretende analizar la sostenibilidad portuaria a través de las relaciones que se establecen entre variables de sostenibilidad, empleando para ello técnicas de inteligencia artificial como son las redes bayesianas. La principal conclusión que se extrae del análisis es que el pilar fundamental de la sostenibilidad portuaria es la dimensión institucional. application/pdf https://revistascientificas.filo.uba.ar/index.php/rtt/article/view/4937 10.34096/rtt.i18.4937 spa Facultad de Filosofía y Letras, Universidad de Buenos Aires https://revistascientificas.filo.uba.ar/index.php/rtt/article/view/4937/4431 Revista Transporte y Territorio; No. 18 (2018): (enero-junio) - Caminos; 264-284 Revista Transporte y Territorio; Núm. 18 (2018): (enero-junio) - Caminos; 264-284 1852-7175 sostenibilidad puertos inteligencia artificial redes bayesianas sustainability ports artificial intelligence bayesian networks Analysis of port institutional, economic, social and environmental dimensions using artificial intelligence Análisis de las dimensiones institucional, económica, social y ambiental portuarias a través de inteligencia artificial info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=transter&d=4937_oai |
| institution |
Universidad de Buenos Aires |
| institution_str |
I-28 |
| repository_str |
R-145 |
| collection |
Repositorio Digital de la Universidad de Buenos Aires (UBA) |
| language |
Español |
| orig_language_str_mv |
spa |
| topic |
sostenibilidad puertos inteligencia artificial redes bayesianas sustainability ports artificial intelligence bayesian networks |
| spellingShingle |
sostenibilidad puertos inteligencia artificial redes bayesianas sustainability ports artificial intelligence bayesian networks Molina Serrano, Beatriz González-Cancelas, Nicoletta Soler-Flores, Francisco Camarero Orive, Alberto Analysis of port institutional, economic, social and environmental dimensions using artificial intelligence |
| topic_facet |
sostenibilidad puertos inteligencia artificial redes bayesianas sustainability ports artificial intelligence bayesian networks |
| description |
Ports are drivers, but at the same time they are immersed in the processes of globalization of societies. That is why they are not alien to the potential of data mining methodologies, which try to discover patterns in large volumes of data sets such as those handled in the port area: Data mining is a discipline linked to the artificial intelligence that, applied in a port environment, makes it possible to find new tools to increase port sustainability. This article aims to analyze port sustainability through the relationships established between sustainability variables, using artificial intelligence techniques such as Bayesian networks. The main conclusion drawn from the analysis is that the fundamental pillar of port sustainability is the institutional dimension. |
| format |
Artículo publishedVersion |
| author |
Molina Serrano, Beatriz González-Cancelas, Nicoletta Soler-Flores, Francisco Camarero Orive, Alberto |
| author_facet |
Molina Serrano, Beatriz González-Cancelas, Nicoletta Soler-Flores, Francisco Camarero Orive, Alberto |
| author_sort |
Molina Serrano, Beatriz |
| title |
Analysis of port institutional, economic, social and environmental dimensions using artificial intelligence |
| title_short |
Analysis of port institutional, economic, social and environmental dimensions using artificial intelligence |
| title_full |
Analysis of port institutional, economic, social and environmental dimensions using artificial intelligence |
| title_fullStr |
Analysis of port institutional, economic, social and environmental dimensions using artificial intelligence |
| title_full_unstemmed |
Analysis of port institutional, economic, social and environmental dimensions using artificial intelligence |
| title_sort |
analysis of port institutional, economic, social and environmental dimensions using artificial intelligence |
| publisher |
Facultad de Filosofía y Letras, Universidad de Buenos Aires |
| publishDate |
2018 |
| url |
https://revistascientificas.filo.uba.ar/index.php/rtt/article/view/4937 https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=transter&d=4937_oai |
| work_keys_str_mv |
AT molinaserranobeatriz analysisofportinstitutionaleconomicsocialandenvironmentaldimensionsusingartificialintelligence AT gonzalezcancelasnicoletta analysisofportinstitutionaleconomicsocialandenvironmentaldimensionsusingartificialintelligence AT solerfloresfrancisco analysisofportinstitutionaleconomicsocialandenvironmentaldimensionsusingartificialintelligence AT camareroorivealberto analysisofportinstitutionaleconomicsocialandenvironmentaldimensionsusingartificialintelligence AT molinaserranobeatriz analisisdelasdimensionesinstitucionaleconomicasocialyambientalportuariasatravesdeinteligenciaartificial AT gonzalezcancelasnicoletta analisisdelasdimensionesinstitucionaleconomicasocialyambientalportuariasatravesdeinteligenciaartificial AT solerfloresfrancisco analisisdelasdimensionesinstitucionaleconomicasocialyambientalportuariasatravesdeinteligenciaartificial AT camareroorivealberto analisisdelasdimensionesinstitucionaleconomicasocialyambientalportuariasatravesdeinteligenciaartificial |
| _version_ |
1851375101118775296 |