Error component model for networks: Specification and testing
This paper develops a subgraph network random effects error components for network data regression models. In particular, it allows for edge and triangle specific components, which serve as a basal model for modeling network effects. It then evaluates the potential effects of ignor...
Guardado en:
| Autor principal: | |
|---|---|
| Formato: | Artículo publishedVersion |
| Lenguaje: | Inglés |
| Publicado: |
Instituto Interdisciplinario de Economía Política (IIEP UBA-CONICET)
2019
|
| Materias: | |
| Acceso en línea: | https://ojs.economicas.uba.ar/DT-IIEP/article/view/2460 https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=dociiep&d=2460_oai |
| Aporte de: |
| id |
I28-R145-2460_oai |
|---|---|
| record_format |
dspace |
| spelling |
I28-R145-2460_oai2026-02-09 Montes Rojas, Gabriel 2019-11-28 This paper develops a subgraph network random effects error components for network data regression models. In particular, it allows for edge and triangle specific components, which serve as a basal model for modeling network effects. It then evaluates the potential effects of ignoring network effects in the estimation of the variance-covariance matrix. It also proposes consistent estimator of the variance components and Lagrange Multiplier tests for evaluating the appropriate model of random components in networks. Monte Carlo simulations show that the tests have good performance in finite samples. It applies the proposed tests to the Call interbank market in Argentina. Este trabajo desarrolla modelos de componentes de errores para regresiones con datos en redes. En particular, el modelo permite efectos específicos de links y triángulos, que sirven como una primera aproximación para modelar efectos de redes más complejos. Se evalúan las consecuencias de ignorar los efectos de redes sobre la estimación de la matriz de varianzas y covarianzas en modelos de regresión. Se proponen estimadores consistentes de los componentes de la varianza y contrastes de multiplicadores de Lagrange para evaluar el modelo correcto a ser usado. Simulaciones de Monte Carlo muestran una buena performance en muestras finitas. Se aplican los contrastes al mercado interbancario Call en Argentina. application/pdf https://ojs.economicas.uba.ar/DT-IIEP/article/view/2460 eng Instituto Interdisciplinario de Economía Política (IIEP UBA-CONICET) https://ojs.economicas.uba.ar/DT-IIEP/article/view/2460/3198 Documentos de trabajo del Instituto Interdisciplinario de Economía Política; Núm. 44 (2019): Documento de trabajo del Instituto Interdisciplinario de Economía Política UBA CONICET; 1-38 Working Papers series at Instituto Interdisciplinario de Economía Política; No. 44 (2019): Working Paper Instituto Interdisciplinario de Economía Política UBA CONICET; 1-38 2451-5728 Redes Factor Moulton Clusters Clusters Networks Moulton factor Error component model for networks: Specification and testing Modelo de componentes de errores para redes: Especificación y contrastes info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=dociiep&d=2460_oai |
| institution |
Universidad de Buenos Aires |
| institution_str |
I-28 |
| repository_str |
R-145 |
| collection |
Repositorio Digital de la Universidad de Buenos Aires (UBA) |
| language |
Inglés |
| orig_language_str_mv |
eng |
| topic |
Redes Factor Moulton Clusters Clusters Networks Moulton factor |
| spellingShingle |
Redes Factor Moulton Clusters Clusters Networks Moulton factor Montes Rojas, Gabriel Error component model for networks: Specification and testing |
| topic_facet |
Redes Factor Moulton Clusters Clusters Networks Moulton factor |
| description |
This paper develops a subgraph network random effects error components for network data regression models. In particular, it allows for edge and triangle specific components, which serve as a basal model for modeling network effects. It then evaluates the potential effects of ignoring network effects in the estimation of the variance-covariance matrix. It also proposes consistent estimator of the variance components and Lagrange Multiplier tests for evaluating the appropriate model of random components in networks. Monte Carlo simulations show that the tests have good performance in finite samples. It applies the proposed tests to the Call interbank market in Argentina. |
| format |
Artículo publishedVersion |
| author |
Montes Rojas, Gabriel |
| author_facet |
Montes Rojas, Gabriel |
| author_sort |
Montes Rojas, Gabriel |
| title |
Error component model for networks: Specification and testing |
| title_short |
Error component model for networks: Specification and testing |
| title_full |
Error component model for networks: Specification and testing |
| title_fullStr |
Error component model for networks: Specification and testing |
| title_full_unstemmed |
Error component model for networks: Specification and testing |
| title_sort |
error component model for networks: specification and testing |
| publisher |
Instituto Interdisciplinario de Economía Política (IIEP UBA-CONICET) |
| publishDate |
2019 |
| url |
https://ojs.economicas.uba.ar/DT-IIEP/article/view/2460 https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=dociiep&d=2460_oai |
| work_keys_str_mv |
AT montesrojasgabriel errorcomponentmodelfornetworksspecificationandtesting AT montesrojasgabriel modelodecomponentesdeerrorespararedesespecificacionycontrastes |
| _version_ |
1857043022506622976 |