Considerations for multiple imputation. Case of study with panel data
Missing data is a challenge for statistical analysis. Imputation, as the process of replacing missing data with an estimated value, is a regular problem in any research project. There are many imputation models and packages that make this process. Nevertheless, the election of the adequate imputatio...
Autores principales: | , , , , |
---|---|
Formato: | Artículo publishedVersion |
Lenguaje: | Español |
Publicado: |
CIMBAGE - IADCOM - Facultad de Ciencias Económicas - Universidad de Buenos Aires
2022
|
Materias: | |
Acceso en línea: | https://ojs.economicas.uba.ar/CIMBAGE/article/view/2295 https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=cimbage&d=2295_oai |
Aporte de: |
id |
I28-R145-2295_oai |
---|---|
record_format |
dspace |
spelling |
I28-R145-2295_oai2025-02-11 Del Callejo Canal, Diana Canal-Martínez, Margarita Edith Vernazza, Elena Urruticoechea, Alar Álvarez-Vaz, Ramón 2022-06-09 Missing data is a challenge for statistical analysis. Imputation, as the process of replacing missing data with an estimated value, is a regular problem in any research project. There are many imputation models and packages that make this process. Nevertheless, the election of the adequate imputation model is transcendental for the results reliability. In this study we work with a Time-Series Cross-Section dataset (TSCS) and 24% of missing data. We used a multiple imputation model and aggregated some prior information to the system. The principal contribution to this exercise is to show that a good imputation requires (beside the software) a problem diagnosis, the configurations of the model imputation, and finally, the diagnostic of the quality of the data imputation. Los datos faltantes son todo un reto en los análisis estadísticos. La imputación, entendida como el proceso de reemplazar los datos faltantes con un valor estimado, es un problema regular en los proyectos de investigación. Existen muchos modelos y subrutinas de diversos software destinadas para este proceso, sin embargo, la selección del modelo de imputación adecuado al tipo de datos disponibles es trascendental para la fiabilidad del resultado. En este estudio se trabaja con una tabla de datos cruzada que involucran series de tiempo (datos panel) con un 24% de datos faltantes. Con el objetivo de imputar estos datos, se utilizó un modelo de imputación múltiple y se agregaron algunas restricciones al sistema. El principal aporte de este ejercicio es mostrar que un buen proceso de imputación requiere del diagnóstico del problema, de la configuración del modelo de imputación y, finalmente, de la verificación de la calidad de los datos imputados. application/pdf text/html https://ojs.economicas.uba.ar/CIMBAGE/article/view/2295 10.56503/CIMBAGE/Vol.1/Nro.24(2022)p.33-47 spa CIMBAGE - IADCOM - Facultad de Ciencias Económicas - Universidad de Buenos Aires https://ojs.economicas.uba.ar/CIMBAGE/article/view/2295/3070 https://ojs.economicas.uba.ar/CIMBAGE/article/view/2295/3075 Derechos de autor 2022 Cuadernos del CIMBAGE Cuadernos del CIMBAGE; Vol. 1 No. 24 (2022): Cuadernos del CIMBAGE N°24 (Junio 2022); 33-47 Cuadernos del CIMBAGE; Vol. 1 Núm. 24 (2022): Cuadernos del CIMBAGE N°24 (Junio 2022); 33-47 1669-1830 1666-5112 IMPUTACIÓN DATOS FALTANTES SERIES DE TIEMPO DATOS PANEL IMPUTACIÓN MÁšLTIPLE. IMPUTATION MISSING DATA TIME SERIES PANEL DATA MULTIPLE IMPUTATION Considerations for multiple imputation. Case of study with panel data Consideraciones a la imputación múltiple. Un caso de estudio con datos panel info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=cimbage&d=2295_oai |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-145 |
collection |
Repositorio Digital de la Universidad de Buenos Aires (UBA) |
language |
Español |
orig_language_str_mv |
spa |
topic |
IMPUTACIÓN DATOS FALTANTES SERIES DE TIEMPO DATOS PANEL IMPUTACIÓN MÁšLTIPLE. IMPUTATION MISSING DATA TIME SERIES PANEL DATA MULTIPLE IMPUTATION |
spellingShingle |
IMPUTACIÓN DATOS FALTANTES SERIES DE TIEMPO DATOS PANEL IMPUTACIÓN MÁšLTIPLE. IMPUTATION MISSING DATA TIME SERIES PANEL DATA MULTIPLE IMPUTATION Del Callejo Canal, Diana Canal-Martínez, Margarita Edith Vernazza, Elena Urruticoechea, Alar Álvarez-Vaz, Ramón Considerations for multiple imputation. Case of study with panel data |
topic_facet |
IMPUTACIÓN DATOS FALTANTES SERIES DE TIEMPO DATOS PANEL IMPUTACIÓN MÁšLTIPLE. IMPUTATION MISSING DATA TIME SERIES PANEL DATA MULTIPLE IMPUTATION |
description |
Missing data is a challenge for statistical analysis. Imputation, as the process of replacing missing data with an estimated value, is a regular problem in any research project. There are many imputation models and packages that make this process. Nevertheless, the election of the adequate imputation model is transcendental for the results reliability. In this study we work with a Time-Series Cross-Section dataset (TSCS) and 24% of missing data. We used a multiple imputation model and aggregated some prior information to the system. The principal contribution to this exercise is to show that a good imputation requires (beside the software) a problem diagnosis, the configurations of the model imputation, and finally, the diagnostic of the quality of the data imputation. |
format |
Artículo publishedVersion |
author |
Del Callejo Canal, Diana Canal-Martínez, Margarita Edith Vernazza, Elena Urruticoechea, Alar Álvarez-Vaz, Ramón |
author_facet |
Del Callejo Canal, Diana Canal-Martínez, Margarita Edith Vernazza, Elena Urruticoechea, Alar Álvarez-Vaz, Ramón |
author_sort |
Del Callejo Canal, Diana |
title |
Considerations for multiple imputation. Case of study with panel data |
title_short |
Considerations for multiple imputation. Case of study with panel data |
title_full |
Considerations for multiple imputation. Case of study with panel data |
title_fullStr |
Considerations for multiple imputation. Case of study with panel data |
title_full_unstemmed |
Considerations for multiple imputation. Case of study with panel data |
title_sort |
considerations for multiple imputation. case of study with panel data |
publisher |
CIMBAGE - IADCOM - Facultad de Ciencias Económicas - Universidad de Buenos Aires |
publishDate |
2022 |
url |
https://ojs.economicas.uba.ar/CIMBAGE/article/view/2295 https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=cimbage&d=2295_oai |
work_keys_str_mv |
AT delcallejocanaldiana considerationsformultipleimputationcaseofstudywithpaneldata AT canalmartinezmargaritaedith considerationsformultipleimputationcaseofstudywithpaneldata AT vernazzaelena considerationsformultipleimputationcaseofstudywithpaneldata AT urruticoecheaalar considerationsformultipleimputationcaseofstudywithpaneldata AT alvarezvazramon considerationsformultipleimputationcaseofstudywithpaneldata AT delcallejocanaldiana consideracionesalaimputacionmultipleuncasodeestudiocondatospanel AT canalmartinezmargaritaedith consideracionesalaimputacionmultipleuncasodeestudiocondatospanel AT vernazzaelena consideracionesalaimputacionmultipleuncasodeestudiocondatospanel AT urruticoecheaalar consideracionesalaimputacionmultipleuncasodeestudiocondatospanel AT alvarezvazramon consideracionesalaimputacionmultipleuncasodeestudiocondatospanel |
_version_ |
1825551040688160768 |