CNN–LSTM con mecanismo de atención suave para el reconocimiento de acciones humanas en videos

Action recognition in videos is currently a topic of interest in the area of computer vision, due to potential applications such as: multimedia indexing, surveillance in public spaces, among others. Attention mechanisms have become a very important concept within deep learning approach, their operat...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Orozco, Carlos Ismael, Buemi, María Elena, Jacobo Berlles, Julio
Formato: Artículo publishedVersion
Lenguaje:Español
Publicado: Universidad de Buenos Aires. Facultad de Ingeniería 2021
Materias:
Acceso en línea:https://elektron.fi.uba.ar/index.php/elektron/article/view/130
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=elektron&d=130_oai
Aporte de:
id I28-R145-130_oai
record_format dspace
spelling I28-R145-130_oai2025-06-26 Orozco, Carlos Ismael Buemi, María Elena Jacobo Berlles, Julio 2021-06-15 Action recognition in videos is currently a topic of interest in the area of computer vision, due to potential applications such as: multimedia indexing, surveillance in public spaces, among others. Attention mechanisms have become a very important concept within deep learning approach, their operation tries to imitate the visual capacity of people that allows them to focus their attention on relevant parts of a scene to extract important information. In this paper we propose a soft attention mechanism adapted to a base CNN–LSTM architecture. First, a VGG16 convolutional neural network extracts the features from the input video. Then an LSTM classifies the video into a particular class. To carry out the training and testing phases, we used the HMDB-51 and UCF-101 datasets. We evaluate the performance of our system using accuracy as an evaluation metric, obtaining 40,7 % (base approach), 51,2 % (with attention) for HMDB-51 and 75,8 % (base approach), 87,2 % (with attention) for UCF-101. El reconocimiento de acciones en videos es actualmente un tema de interés en el área de la visión por computador, debido a potenciales aplicaciones como: indexación multimedia, vigilancia en espacios públicos, entre otras. Los mecanismos de atención se han convertido en un concepto muy importante dentro del enfoque de aprendizaje profundo, su operación intenta imitar la capacidad visual de las personas que les permite enfocar su atención en partes relevantes de una escena para extraer información importante. En este artículo proponemos un mecanismo de atención suave adaptado para degradar la arquitectura CNN–LSTM. Primero, una red neuronal convolucional VGG16 extrae las características del video de entrada. Para llevar a cabo las fases de entrenamiento y prueba, usamos los conjuntos de datos HMDB-51 y UCF-101. Evaluamos el desempeño de nuestro sistema usando la precisión como métrica de evaluación, obteniendo 40,7 % (enfoque base), 51,2 % (con atención) para HMDB-51 y 75,8 % (enfoque base), 87,2 % (con atención) para UCF-101. application/pdf https://elektron.fi.uba.ar/index.php/elektron/article/view/130 10.37537/rev.elektron.5.1.130.2021 spa Universidad de Buenos Aires. Facultad de Ingeniería https://elektron.fi.uba.ar/index.php/elektron/article/view/130/246 https://elektron.fi.uba.ar/index.php/elektron/article/view/130/247 https://elektron.fi.uba.ar/index.php/elektron/article/downloadSuppFile/130/142 https://elektron.fi.uba.ar/index.php/elektron/article/downloadSuppFile/130/153 https://elektron.fi.uba.ar/index.php/elektron/article/downloadSuppFile/130/154 https://elektron.fi.uba.ar/index.php/elektron/article/downloadSuppFile/130/155 info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/4.0 Elektron; Vol 5, No 1 (2021) 2525-0159 action recognition, convolutional neural network, long short-term memory, attention mechanism reconocimiento de acciones; redes neuronales convolucionales; redes neuronales lstm; mecanismo de atención CNN–LSTM con mecanismo de atención suave para el reconocimiento de acciones humanas en videos info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion info:ar-repo/semantics/artículo https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=elektron&d=130_oai
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-145
collection Repositorio Digital de la Universidad de Buenos Aires (UBA)
language Español
orig_language_str_mv spa
topic action recognition, convolutional neural network, long short-term memory, attention mechanism
reconocimiento de acciones; redes neuronales convolucionales; redes neuronales lstm; mecanismo de atención
spellingShingle action recognition, convolutional neural network, long short-term memory, attention mechanism
reconocimiento de acciones; redes neuronales convolucionales; redes neuronales lstm; mecanismo de atención
Orozco, Carlos Ismael
Buemi, María Elena
Jacobo Berlles, Julio
CNN–LSTM con mecanismo de atención suave para el reconocimiento de acciones humanas en videos
topic_facet action recognition, convolutional neural network, long short-term memory, attention mechanism
reconocimiento de acciones; redes neuronales convolucionales; redes neuronales lstm; mecanismo de atención
description Action recognition in videos is currently a topic of interest in the area of computer vision, due to potential applications such as: multimedia indexing, surveillance in public spaces, among others. Attention mechanisms have become a very important concept within deep learning approach, their operation tries to imitate the visual capacity of people that allows them to focus their attention on relevant parts of a scene to extract important information. In this paper we propose a soft attention mechanism adapted to a base CNN–LSTM architecture. First, a VGG16 convolutional neural network extracts the features from the input video. Then an LSTM classifies the video into a particular class. To carry out the training and testing phases, we used the HMDB-51 and UCF-101 datasets. We evaluate the performance of our system using accuracy as an evaluation metric, obtaining 40,7 % (base approach), 51,2 % (with attention) for HMDB-51 and 75,8 % (base approach), 87,2 % (with attention) for UCF-101.
format Artículo
publishedVersion
Artículo
author Orozco, Carlos Ismael
Buemi, María Elena
Jacobo Berlles, Julio
author_facet Orozco, Carlos Ismael
Buemi, María Elena
Jacobo Berlles, Julio
author_sort Orozco, Carlos Ismael
title CNN–LSTM con mecanismo de atención suave para el reconocimiento de acciones humanas en videos
title_short CNN–LSTM con mecanismo de atención suave para el reconocimiento de acciones humanas en videos
title_full CNN–LSTM con mecanismo de atención suave para el reconocimiento de acciones humanas en videos
title_fullStr CNN–LSTM con mecanismo de atención suave para el reconocimiento de acciones humanas en videos
title_full_unstemmed CNN–LSTM con mecanismo de atención suave para el reconocimiento de acciones humanas en videos
title_sort cnn–lstm con mecanismo de atención suave para el reconocimiento de acciones humanas en videos
publisher Universidad de Buenos Aires. Facultad de Ingeniería
publishDate 2021
url https://elektron.fi.uba.ar/index.php/elektron/article/view/130
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=elektron&d=130_oai
work_keys_str_mv AT orozcocarlosismael cnnlstmconmecanismodeatencionsuaveparaelreconocimientodeaccioneshumanasenvideos
AT buemimariaelena cnnlstmconmecanismodeatencionsuaveparaelreconocimientodeaccioneshumanasenvideos
AT jacoboberllesjulio cnnlstmconmecanismodeatencionsuaveparaelreconocimientodeaccioneshumanasenvideos
_version_ 1840330279958347776