Structural equations models and their application to risk perception

Quantitative research requires the use of statistical methods. Generally, a researcher starts from a theoretical model and gathers the necessary information to validate it. However, the descriptive or exploratory characteristics of most statistical models which evaluate interaction among a...

Descripción completa

Detalles Bibliográficos
Autores principales: Lepera, Andrea, Muiños, Roberto
Formato: Artículo publishedVersion
Lenguaje:Español
Publicado: CIMBAGE - IADCOM - Facultad de Ciencias Económicas - Universidad de Buenos Aires 2018
Materias:
Acceso en línea:https://ojs.economicas.uba.ar/CIMBAGE/article/view/1183
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=cimbage&d=1183_oai
Aporte de:
id I28-R145-1183_oai
record_format dspace
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-145
collection Repositorio Digital de la Universidad de Buenos Aires (UBA)
language Español
orig_language_str_mv spa
topic Modelos de Ecuaciones Estructurales
Percepción del Riesgo
Factores Latentes
Structural Equation Models,
atent Factors,
Risk Perception
spellingShingle Modelos de Ecuaciones Estructurales
Percepción del Riesgo
Factores Latentes
Structural Equation Models,
atent Factors,
Risk Perception
Lepera, Andrea
Muiños, Roberto
Structural equations models and their application to risk perception
topic_facet Modelos de Ecuaciones Estructurales
Percepción del Riesgo
Factores Latentes
Structural Equation Models,
atent Factors,
Risk Perception
description Quantitative research requires the use of statistical methods. Generally, a researcher starts from a theoretical model and gathers the necessary information to validate it. However, the descriptive or exploratory characteristics of most statistical models which evaluate interaction among a number of variables  simultaneously render this task more difficult. Structural equation models (SEM), given their confirmatory nature, allow for the use of empirical data to evaluate the validity of the theoretical model considered. SEMs express the relationship among a few variables, which can either be directly observable or not observable at all. Many of the most widely used statistical models may be considered particular cases of SEM, including linear regression, canonical correlation analysis, path analysis, and confirmatory factor analysis. Nonetheless, some of SEM characteristics clearly distinguish it from both the univariate and the multivariate models. Multivariate techniques only examine the relationships between two or more observable variables, providing no possibility to consider hypothetical, non - observable variables. Most of these techniques are exploratory, i.e., they look for general patterns defined by the observed data itself. The SEM is of a confirmatory nature, i.e., the design of relationships among variables must be previously made explicit on the basis of theoretical expectations. This distinctive feature makes this method especially adequate for testing theoretical models through the use of empirical data. This paper presents the main theoretical - conceptual characteristics of Structural Equation Models, along with their application to a psychological research.
format Artículo
publishedVersion
author Lepera, Andrea
Muiños, Roberto
author_facet Lepera, Andrea
Muiños, Roberto
author_sort Lepera, Andrea
title Structural equations models and their application to risk perception
title_short Structural equations models and their application to risk perception
title_full Structural equations models and their application to risk perception
title_fullStr Structural equations models and their application to risk perception
title_full_unstemmed Structural equations models and their application to risk perception
title_sort structural equations models and their application to risk perception
publisher CIMBAGE - IADCOM - Facultad de Ciencias Económicas - Universidad de Buenos Aires
publishDate 2018
url https://ojs.economicas.uba.ar/CIMBAGE/article/view/1183
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=cimbage&d=1183_oai
work_keys_str_mv AT leperaandrea structuralequationsmodelsandtheirapplicationtoriskperception
AT muinosroberto structuralequationsmodelsandtheirapplicationtoriskperception
AT leperaandrea losmodelosdeecuacionesestructuralesysuaplicacionalaevaluaciondelriesgopercibido
AT muinosroberto losmodelosdeecuacionesestructuralesysuaplicacionalaevaluaciondelriesgopercibido
_version_ 1825551029865807872
spelling I28-R145-1183_oai2025-02-11 Lepera, Andrea Muiños, Roberto 2018-09-19 Quantitative research requires the use of statistical methods. Generally, a researcher starts from a theoretical model and gathers the necessary information to validate it. However, the descriptive or exploratory characteristics of most statistical models which evaluate interaction among a number of variables  simultaneously render this task more difficult. Structural equation models (SEM), given their confirmatory nature, allow for the use of empirical data to evaluate the validity of the theoretical model considered. SEMs express the relationship among a few variables, which can either be directly observable or not observable at all. Many of the most widely used statistical models may be considered particular cases of SEM, including linear regression, canonical correlation analysis, path analysis, and confirmatory factor analysis. Nonetheless, some of SEM characteristics clearly distinguish it from both the univariate and the multivariate models. Multivariate techniques only examine the relationships between two or more observable variables, providing no possibility to consider hypothetical, non - observable variables. Most of these techniques are exploratory, i.e., they look for general patterns defined by the observed data itself. The SEM is of a confirmatory nature, i.e., the design of relationships among variables must be previously made explicit on the basis of theoretical expectations. This distinctive feature makes this method especially adequate for testing theoretical models through the use of empirical data. This paper presents the main theoretical - conceptual characteristics of Structural Equation Models, along with their application to a psychological research. La investigación cuantitativa requiere de la utilización de métodos estadísticos. El investigador, en general, parte de un modelo teórico y recoge la información necesaria para validarlo. Sin embargo, las características descriptivas o exploratorias de la mayoría de los modelos estadísticos que evalúan la interacción entre varias variables simultáneamente, dificultan esta tarea. Los modelos de ecuaciones estructurales (SEM, según sus siglas en inglés), por su carácter confirmatorio, permiten utilizar datos empíricos para evaluar la validez del modelo teórico considerado. Los modelos SEM expresan la relación entre distintas variables, las cuales pueden ser directamente observables o no observables. Muchos de los modelos estadísticos más utilizados pueden considerarse casos particulares de SEM, incluyendo regresión lineal, análisis de correlación canónica, Path análisis, y el análisis factorial confirmatorio. Sin embargo, algunas características del SEM lo distinguen claramente tanto de los modelos univariados como de los multivariados. Las técnicas multivariadas se limitan a examinar las relaciones entre dos o más variables observables, sin posibilidad de considerar variables hipotéticas, no observables directamente. La mayoría de estas técnicas son de carácter exploratorio: buscan patrones generales definidos por los propios datos observados. El SEM es de carácter confirmatorio: el diseño de relaciones entre las variables debe ser explicitado a priori sobre la base de expectativas teóricas. Esta característica distintiva del método lo hace especialmente adecuado para testear modelos teóricos mediante la utilización de datos empíricos. En este trabajo se presentan las principales características teórico- conceptuales de los Modelos de Ecuaciones Estructurales, conjuntamente con una aplicación a una investigación psicológica. application/pdf https://ojs.economicas.uba.ar/CIMBAGE/article/view/1183 spa CIMBAGE - IADCOM - Facultad de Ciencias Económicas - Universidad de Buenos Aires https://ojs.economicas.uba.ar/CIMBAGE/article/view/1183/1792 Cuadernos del CIMBAGE; Vol. 1 No. 20 (2018): Cuadernos del CIMBAGE; 85-105 Cuadernos del CIMBAGE; Vol. 1 Núm. 20 (2018): Cuadernos del CIMBAGE; 85-105 1669-1830 1666-5112 Modelos de Ecuaciones Estructurales Percepción del Riesgo Factores Latentes Structural Equation Models, atent Factors, Risk Perception Structural equations models and their application to risk perception Los modelos de ecuaciones estructurales y su aplicación a la evaluación del riesgo percibido info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=cimbage&d=1183_oai