Desarrollo y aplicación de métodos computacionales de avanzada para el calculo de propiedades electrónicas de materiales correlacionados.

Estudiamos varios modelos paradigmáticos de materiales correlacionados usando la teoría de Campo Medio Dinámico (DMFT) bajo un tratamiento unicado. El problema auxiliar de impureza generado en las iteraciones DMFT se resuelve usando Renormalización basada en la Matriz Densidad (DMRG), con vector cor...

Descripción completa

Detalles Bibliográficos
Autor principal: Nuñez Fernández, Yuriel
Formato: Tesis NonPeerReviewed
Lenguaje:Español
Publicado: 2018
Materias:
Acceso en línea:http://ricabib.cab.cnea.gov.ar/784/1/Nu%C3%B1ez_Fern%C3%A1ndez.pdf
Aporte de:Repositorio Institucional Centro Atómico Bariloche e Instituto Balseiro (CNEA) de CAB - CNEA - Biblioteca Leo Falicov Ver origen
Descripción
Sumario:Estudiamos varios modelos paradigmáticos de materiales correlacionados usando la teoría de Campo Medio Dinámico (DMFT) bajo un tratamiento unicado. El problema auxiliar de impureza generado en las iteraciones DMFT se resuelve usando Renormalización basada en la Matriz Densidad (DMRG), con vector corrección, de forma que todas las escalas de energía se tratan con igual precisión y la densidad de estados (DOS) se obtiene en el eje real. Calculamos modelos tipo Hubbard, Hubbard-Hund y Kanamori-Hubbard, teniendo en cuenta la interacción de Coulomb intra (inter) orbital U (U_12) y el acoplamiento de Hund J, en la red de Bethe y red cuadrada, de una o dos bandas (con o sin hibridización interorbital), sistemas semillenos y dopados. Así logramos caracterizar fenómenos bien conocidos como la transición metal-aislante de Mott a temperatura cero, y otros interesantes como la transición de Hund y la transición selectiva en orbital. Con la idea de estudiar correlaciones espaciales, para un modelo tipo Hubbard de una banda en la red cuadrada, inspirado en los cupratos, implementamos el cluster-DMFT de 2 y 4 sitios, en su variante celular. Logramos reproducir preliminarmente resultados obtenidos con otras técnicas numéricas, pudiendo obtener la DOS directamente en el eje real con baños hasta 4 veces más grandes que los considerados hasta ahora, con lo cual se reduce el efecto de tamaño finito. Estudiamos el modelo de Hubbard de dos bandas en la red cuadrada en presencia de hibridización interorbital entre primeros vecinos y desdoblamiento por campocristalino. Encontramos que dicha hibridización siempre lleva a una DOS local finita en la energía de Fermi en los dos orbitales cuando al menos una de las bandas es metálica. Cuando los parámetros del modelo son tales que el potencial químico está en la banda de Hubbard del orbital 1 y entre las bandas de Hubbard del orbital 2, en este último aparece un pico de cuasipartícula en el nivel de Fermi cuyo peso decae exponencialmente con la interacción U. El comportamiento es similar a la física de Kondo donde la banda 1 hace el papel de baño no interactuante. En un modelo de dos bandas tipo Hubbard-Hund invariante rotacional, caracterizamos el espacio de parámetros U, J. Observamos la transición metal-aislante al aumentar U (transición de Mott) y también al aumentar J (transición de Hund). Calculamos el peso de cuasipartícula y obtuvimos que, para J ≠ 0, la transición de Mott es de primer orden como función de U y es de segundo orden para J = 0. Estos resultados están de acuerdo con el comportamiento obtenido por colaboradores usando bosones esclavos y también Monte Carlo cuántico. En modelos tipo Hubbard-Kanamori de dos bandas iguales, nuestros resultados sugieren que la transición de Mott es de primer orden cuando U_12 ≤ U y es continua cuando U_12 = U o cuando U_ 12 < U/2. Para bandas diferentes, obtuvimos la transición de Mott selectiva en orbital. Observamos que ésta es estable frente a la hibridización interorbital (t´) si U_12 ≤ U/2, coincidiendo con otros autores, mientras que desaparece con t´ si U_12 ≤ U. Nuestros resultados poseen la ventaja de mostrar la DOS en el eje real de frecuencias. Estudiando estos modelos de dos bandas, encontramos unas excitaciones novedosas, que aparecen como picos en la DOS, en energías del orden de ∆ = U - U_12 para la fase metálica, hasta ahora no reportados en la literatura. Caracterizamos las cuasipartículas asociadas a estas excitaciones, concluyendo que son pares hueco-doblón interorbital. Una DOS finita en la energía de Fermi de una banda está correlacionada con el surgimiento de estados de cuasipartícula bien definidos a energías ∆ en la otra banda. Una importante consecuencia de este mecanismo es que en el caso simétrico U_12 = U el pico de esta cuasipartícula se sitúa en la energía de Fermi, sin importar si una banda es mucho más angosta que la otra. Esto significa que ambas bandas son metálicas mientras una lo sea: no hay transición selectiva. Nuestros cálculos confirman esta predicción y además muestran que, para una relación de 1/50 de los anchos de banda, el pico en la energía de Fermi en la banda ancha aparece por el mecanismo de Kondo mientras que en la banda angosta aparece debido a las mencionadas cuasipartículas. Este resultado da por terminada una controversia de más de una década entre diferentes autores donde algunos sostenían que podía haber una transición selectiva cuando el cociente de los anchos de banda fuese menor que 1/5. Gran parte de esta tesis estuvo abocada al desarrollo de métodos computacionales de avanzada para el cálculo de las propiedades mencionadas arriba. Desarrollamos tres softwares de libre acceso para la diagonalización exacta, el DMRG y el DMFT, respectivamente, con la suficiente eficiencia, generalidad y abstracción para poder tratar todos estos problemas a la vez y que puedan ser extendidos fácilmente a nuevos modelos o parámetros. Un aporte relevante fue la implementación del DMRG para la impureza efectiva que forma parte esencial del DMFT. Para esto, para la impureza efectiva representamos la hibridización en forma de estrella (ver Figura 3.3) -y separada en espín- y no en forma de cadena como se hacía tradicionalmente, mejorando considerablemente el costo de los cálculos. El mismo programa DMRG permite hacer cálculos de hamiltonianos generales tipo química cuántica, tanto del estado fundamental como de la respuesta dinámica. La técnica desarrollada en esta tesis es una de las más adecuadas y confiable para el cálculo de estructura electrónica a temperatura cero de sistemas correlacionados.