SHAP-Based Explainable Clustering for Medical Records Insights
Machine Learning is a fundamental tool for information analysis. Among its various techniques, clustering stands out as a family of algorithms capable of dividing large datasets into distinct groups based on similarity. In the healthcare domain, state-of-the-art research has been conducted, leveragi...
Guardado en:
| Autores principales: | , , , |
|---|---|
| Formato: | documento de conferencia conferenceObject acceptedVersion |
| Lenguaje: | Inglés |
| Publicado: |
Universidad Nacional del Comahue. Facultad de Informática
2025
|
| Materias: | |
| Acceso en línea: | https://rdi.uncoma.edu.ar/handle/uncomaid/18633 |
| Aporte de: |
| id |
I22-R178-uncomaid-18633 |
|---|---|
| record_format |
dspace |
| spelling |
I22-R178-uncomaid-186332025-04-22T12:32:04Z SHAP-Based Explainable Clustering for Medical Records Insights Lusso, Adriano Mauricio Torres, Antonella Braun, Germán Gimenez, Christian Nelson AI in healthcare Clustering SHAP Póster Ciencias de la Computación e Información Machine Learning is a fundamental tool for information analysis. Among its various techniques, clustering stands out as a family of algorithms capable of dividing large datasets into distinct groups based on similarity. In the healthcare domain, state-of-the-art research has been conducted, leveraging the vast availability of patient medical data, which makes clustering a powerful tool for knowledge discovery. However, Machine Learning also presents limitations, such as difficulties in explaining its results and the potential for unethical biases, which pose significant challenges for real-world applications. This study explores opportunities for applying clustering techniques within the Social Security Insurance system of Universidad Nacional del Comahue, a university located in Neuquén, Argentina. Additionally, clustering will be combined with the SHAP framework to enhance the explainability of the obtained results. Fil: Lusso, Adriano Mauricio. Universidad Nacional del Comahue. Facultad de Informática. Grupo de Investigación en Lenguajes e Inteligencia Artificial; Argentina. Fil: Torres, Antonella. Universidad Nacional del Comahue. Facultad de Informática. Grupo de Investigación en Lenguajes e Inteligencia Artificial; Argentina. Fil: Braun, Germán. Universidad Nacional del Comahue. Facultad de Informática. Grupo de Investigación en Lenguajes e Inteligencia Artificial; Argentina. Fil: Gimenez, Christian Nelson. Universidad Nacional del Comahue. Facultad de Informática. Grupo de Investigación en Lenguajes e Inteligencia Artificial; Argentina. 2025-03-10 2025-04-11T15:31:44Z 2025-04-11T15:31:44Z documento de conferencia conferenceObject acceptedVersion https://rdi.uncoma.edu.ar/handle/uncomaid/18633 eng https://khipu.ai/khipu2025/poster-sessions-2025/#PosterSession1 Atribución-NoComercial-CompartirIgual 4.0 https://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf application/pdf Universidad Nacional del Comahue. Facultad de Informática Latin American AI Institute |
| institution |
Universidad Nacional del Comahue |
| institution_str |
I-22 |
| repository_str |
R-178 |
| collection |
Repositorio Institucional UNCo |
| language |
Inglés |
| topic |
AI in healthcare Clustering SHAP Póster Ciencias de la Computación e Información |
| spellingShingle |
AI in healthcare Clustering SHAP Póster Ciencias de la Computación e Información Lusso, Adriano Mauricio Torres, Antonella Braun, Germán Gimenez, Christian Nelson SHAP-Based Explainable Clustering for Medical Records Insights |
| topic_facet |
AI in healthcare Clustering SHAP Póster Ciencias de la Computación e Información |
| description |
Machine Learning is a fundamental tool for information analysis. Among its various techniques, clustering stands out as a family of algorithms capable of dividing large datasets into distinct groups based on similarity. In the healthcare domain, state-of-the-art research has been conducted, leveraging the vast availability of patient medical data, which makes clustering a powerful tool for knowledge discovery. However, Machine Learning also presents limitations, such as difficulties in explaining its results and the potential for unethical biases, which pose significant challenges for real-world applications. This study explores opportunities for applying clustering techniques within the Social Security Insurance system of Universidad Nacional del Comahue, a university located in Neuquén, Argentina. Additionally, clustering will be combined with the SHAP framework to enhance the explainability of the obtained results. |
| format |
documento de conferencia conferenceObject acceptedVersion |
| author |
Lusso, Adriano Mauricio Torres, Antonella Braun, Germán Gimenez, Christian Nelson |
| author_facet |
Lusso, Adriano Mauricio Torres, Antonella Braun, Germán Gimenez, Christian Nelson |
| author_sort |
Lusso, Adriano Mauricio |
| title |
SHAP-Based Explainable Clustering for Medical Records Insights |
| title_short |
SHAP-Based Explainable Clustering for Medical Records Insights |
| title_full |
SHAP-Based Explainable Clustering for Medical Records Insights |
| title_fullStr |
SHAP-Based Explainable Clustering for Medical Records Insights |
| title_full_unstemmed |
SHAP-Based Explainable Clustering for Medical Records Insights |
| title_sort |
shap-based explainable clustering for medical records insights |
| publisher |
Universidad Nacional del Comahue. Facultad de Informática |
| publishDate |
2025 |
| url |
https://rdi.uncoma.edu.ar/handle/uncomaid/18633 |
| work_keys_str_mv |
AT lussoadrianomauricio shapbasedexplainableclusteringformedicalrecordsinsights AT torresantonella shapbasedexplainableclusteringformedicalrecordsinsights AT braungerman shapbasedexplainableclusteringformedicalrecordsinsights AT gimenezchristiannelson shapbasedexplainableclusteringformedicalrecordsinsights |
| _version_ |
1832523823969206272 |