SHAP-Based Explainable Clustering for Medical Records Insights

Machine Learning is a fundamental tool for information analysis. Among its various techniques, clustering stands out as a family of algorithms capable of dividing large datasets into distinct groups based on similarity. In the healthcare domain, state-of-the-art research has been conducted, leveragi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Lusso, Adriano Mauricio, Torres, Antonella, Braun, Germán, Gimenez, Christian Nelson
Formato: documento de conferencia conferenceObject acceptedVersion
Lenguaje:Inglés
Publicado: Universidad Nacional del Comahue. Facultad de Informática 2025
Materias:
Acceso en línea:https://rdi.uncoma.edu.ar/handle/uncomaid/18633
Aporte de:
id I22-R178-uncomaid-18633
record_format dspace
spelling I22-R178-uncomaid-186332025-04-22T12:32:04Z SHAP-Based Explainable Clustering for Medical Records Insights Lusso, Adriano Mauricio Torres, Antonella Braun, Germán Gimenez, Christian Nelson AI in healthcare Clustering SHAP Póster Ciencias de la Computación e Información Machine Learning is a fundamental tool for information analysis. Among its various techniques, clustering stands out as a family of algorithms capable of dividing large datasets into distinct groups based on similarity. In the healthcare domain, state-of-the-art research has been conducted, leveraging the vast availability of patient medical data, which makes clustering a powerful tool for knowledge discovery. However, Machine Learning also presents limitations, such as difficulties in explaining its results and the potential for unethical biases, which pose significant challenges for real-world applications. This study explores opportunities for applying clustering techniques within the Social Security Insurance system of Universidad Nacional del Comahue, a university located in Neuquén, Argentina. Additionally, clustering will be combined with the SHAP framework to enhance the explainability of the obtained results. Fil: Lusso, Adriano Mauricio. Universidad Nacional del Comahue. Facultad de Informática. Grupo de Investigación en Lenguajes e Inteligencia Artificial; Argentina. Fil: Torres, Antonella. Universidad Nacional del Comahue. Facultad de Informática. Grupo de Investigación en Lenguajes e Inteligencia Artificial; Argentina. Fil: Braun, Germán. Universidad Nacional del Comahue. Facultad de Informática. Grupo de Investigación en Lenguajes e Inteligencia Artificial; Argentina. Fil: Gimenez, Christian Nelson. Universidad Nacional del Comahue. Facultad de Informática. Grupo de Investigación en Lenguajes e Inteligencia Artificial; Argentina. 2025-03-10 2025-04-11T15:31:44Z 2025-04-11T15:31:44Z documento de conferencia conferenceObject acceptedVersion https://rdi.uncoma.edu.ar/handle/uncomaid/18633 eng https://khipu.ai/khipu2025/poster-sessions-2025/#PosterSession1 Atribución-NoComercial-CompartirIgual 4.0 https://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf application/pdf Universidad Nacional del Comahue. Facultad de Informática Latin American AI Institute
institution Universidad Nacional del Comahue
institution_str I-22
repository_str R-178
collection Repositorio Institucional UNCo
language Inglés
topic AI in healthcare
Clustering
SHAP
Póster
Ciencias de la Computación e Información
spellingShingle AI in healthcare
Clustering
SHAP
Póster
Ciencias de la Computación e Información
Lusso, Adriano Mauricio
Torres, Antonella
Braun, Germán
Gimenez, Christian Nelson
SHAP-Based Explainable Clustering for Medical Records Insights
topic_facet AI in healthcare
Clustering
SHAP
Póster
Ciencias de la Computación e Información
description Machine Learning is a fundamental tool for information analysis. Among its various techniques, clustering stands out as a family of algorithms capable of dividing large datasets into distinct groups based on similarity. In the healthcare domain, state-of-the-art research has been conducted, leveraging the vast availability of patient medical data, which makes clustering a powerful tool for knowledge discovery. However, Machine Learning also presents limitations, such as difficulties in explaining its results and the potential for unethical biases, which pose significant challenges for real-world applications. This study explores opportunities for applying clustering techniques within the Social Security Insurance system of Universidad Nacional del Comahue, a university located in Neuquén, Argentina. Additionally, clustering will be combined with the SHAP framework to enhance the explainability of the obtained results.
format documento de conferencia
conferenceObject
acceptedVersion
author Lusso, Adriano Mauricio
Torres, Antonella
Braun, Germán
Gimenez, Christian Nelson
author_facet Lusso, Adriano Mauricio
Torres, Antonella
Braun, Germán
Gimenez, Christian Nelson
author_sort Lusso, Adriano Mauricio
title SHAP-Based Explainable Clustering for Medical Records Insights
title_short SHAP-Based Explainable Clustering for Medical Records Insights
title_full SHAP-Based Explainable Clustering for Medical Records Insights
title_fullStr SHAP-Based Explainable Clustering for Medical Records Insights
title_full_unstemmed SHAP-Based Explainable Clustering for Medical Records Insights
title_sort shap-based explainable clustering for medical records insights
publisher Universidad Nacional del Comahue. Facultad de Informática
publishDate 2025
url https://rdi.uncoma.edu.ar/handle/uncomaid/18633
work_keys_str_mv AT lussoadrianomauricio shapbasedexplainableclusteringformedicalrecordsinsights
AT torresantonella shapbasedexplainableclusteringformedicalrecordsinsights
AT braungerman shapbasedexplainableclusteringformedicalrecordsinsights
AT gimenezchristiannelson shapbasedexplainableclusteringformedicalrecordsinsights
_version_ 1832523823969206272