Approximation of the modified error function
In this article, we obtain explicit approximations of the modified error function introduced in Cho and Sunderland (1974), as part of a Stefan problem with a temperature-dependent thermal conductivity. This function depends on a parameter δ, which is related to the ther- mal conductivity in the orig...
Guardado en:
| Autores principales: | , , |
|---|---|
| Formato: | Articulo article acceptedVersion |
| Lenguaje: | Inglés |
| Publicado: |
Elsevier
2018
|
| Materias: | |
| Acceso en línea: | http://rdi.uncoma.edu.ar/handle/uncomaid/17308 |
| Aporte de: |
| id |
I22-R178-uncomaid-17308 |
|---|---|
| record_format |
dspace |
| spelling |
I22-R178-uncomaid-173082023-10-11T14:49:18Z Approximation of the modified error function Ceretani, Andrea Noemí Salva, Natalia Nieves Tarzia, Domingo Alberto Modified error function Error function Phase change problem Temperature dependent thermal Conductivity Nonlinear second order ordinary differential equation Ciencias Aplicadas In this article, we obtain explicit approximations of the modified error function introduced in Cho and Sunderland (1974), as part of a Stefan problem with a temperature-dependent thermal conductivity. This function depends on a parameter δ, which is related to the ther- mal conductivity in the original phase-change process. We propose a method to obtain ap- proximations, which is based on the assumption that the modified error function admits a power series representation in δ. Accurate approximations are obtained through functions involving error and exponential functions only. For the special case in which δassumes small positive values, we show that the modified error function presents some character- istic features of the classical error function, such as monotony, concavity, and boundedness. Moreover, we prove that the modified error function converges to the classical one when δgoes to zero. Fil: Ceretani, Andrea Noemí. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fil: Ceretani, Andrea Noemí. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemática; Argentina. Fil: Salva, Natalia Nieves. Universidad Nacional del Comahue. Centro Regional Universitario Bariloche. Departamento de Matemática; Argentina. Fil: Salva, Natalia Nieves. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche. Departamento de Mecánica Computacional; Argentina. Fil: Salva, Natalia Nieves. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fil: Tarzia, Domingo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fil: Tarzia, Domingo Alberto. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemática; Argentina 2018-11-15 2023-07-04T14:17:33Z 2023-07-04T14:17:33Z Articulo article acceptedVersion 0096-3003 http://rdi.uncoma.edu.ar/handle/uncomaid/17308 eng https://doi.org/10.1016/j.amc.2018.05.054 Atribución-NoComercial-CompartirIgual 2.5 Argentina https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ application/pdf pp. 607-617 application/pdf Elsevier Applied Mathematics and Computation. Vol. 337 (2018) |
| institution |
Universidad Nacional del Comahue |
| institution_str |
I-22 |
| repository_str |
R-178 |
| collection |
Repositorio Institucional UNCo |
| language |
Inglés |
| topic |
Modified error function Error function Phase change problem Temperature dependent thermal Conductivity Nonlinear second order ordinary differential equation Ciencias Aplicadas |
| spellingShingle |
Modified error function Error function Phase change problem Temperature dependent thermal Conductivity Nonlinear second order ordinary differential equation Ciencias Aplicadas Ceretani, Andrea Noemí Salva, Natalia Nieves Tarzia, Domingo Alberto Approximation of the modified error function |
| topic_facet |
Modified error function Error function Phase change problem Temperature dependent thermal Conductivity Nonlinear second order ordinary differential equation Ciencias Aplicadas |
| description |
In this article, we obtain explicit approximations of the modified error function introduced in Cho and Sunderland (1974), as part of a Stefan problem with a temperature-dependent thermal conductivity. This function depends on a parameter δ, which is related to the ther- mal conductivity in the original phase-change process. We propose a method to obtain ap- proximations, which is based on the assumption that the modified error function admits a power series representation in δ. Accurate approximations are obtained through functions involving error and exponential functions only. For the special case in which δassumes small positive values, we show that the modified error function presents some character- istic features of the classical error function, such as monotony, concavity, and boundedness. Moreover, we prove that the modified error function converges to the classical one when δgoes to zero. |
| format |
Articulo article acceptedVersion |
| author |
Ceretani, Andrea Noemí Salva, Natalia Nieves Tarzia, Domingo Alberto |
| author_facet |
Ceretani, Andrea Noemí Salva, Natalia Nieves Tarzia, Domingo Alberto |
| author_sort |
Ceretani, Andrea Noemí |
| title |
Approximation of the modified error function |
| title_short |
Approximation of the modified error function |
| title_full |
Approximation of the modified error function |
| title_fullStr |
Approximation of the modified error function |
| title_full_unstemmed |
Approximation of the modified error function |
| title_sort |
approximation of the modified error function |
| publisher |
Elsevier |
| publishDate |
2018 |
| url |
http://rdi.uncoma.edu.ar/handle/uncomaid/17308 |
| work_keys_str_mv |
AT ceretaniandreanoemi approximationofthemodifiederrorfunction AT salvanatalianieves approximationofthemodifiederrorfunction AT tarziadomingoalberto approximationofthemodifiederrorfunction |
| _version_ |
1807224773670862848 |