Regulación de la supervivencia y diferenciación neuronal por ácidos grasos poliinsaturados

La retina es el tejido neural que tapiza la parte posterior del ojo. En los vertebrados está constituida por cinco clases de neuronas: los fotorreceptores (conos y bastones), las amacrinas, las horizontales, las ganglionares, y las bipolares. Debido a su relativa simplicidad, accesibilidad y a que l...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Agnolazza, Daniela L.
Otros Autores: Rotstein, Nora Patricia
Formato: tesis doctoral
Lenguaje:Español
Publicado: 2014
Materias:
DHA
EPA
Acceso en línea:http://repositoriodigital.uns.edu.ar/handle/123456789/527
Aporte de:
id I20-R126123456789-527
record_format dspace
institution Universidad Nacional del Sur
institution_str I-20
repository_str R-126
collection Repositorio Institucional Universidad Nacional del Sur (UNS)
language Español
orig_language_str_mv spa
topic Bioquímica
Fotorreceptores
Apoptosis
DHA
EPA
spellingShingle Bioquímica
Fotorreceptores
Apoptosis
DHA
EPA
Agnolazza, Daniela L.
Regulación de la supervivencia y diferenciación neuronal por ácidos grasos poliinsaturados
topic_facet Bioquímica
Fotorreceptores
Apoptosis
DHA
EPA
author2 Rotstein, Nora Patricia
author_facet Rotstein, Nora Patricia
Agnolazza, Daniela L.
format tesis doctoral
author Agnolazza, Daniela L.
author_sort Agnolazza, Daniela L.
title Regulación de la supervivencia y diferenciación neuronal por ácidos grasos poliinsaturados
title_short Regulación de la supervivencia y diferenciación neuronal por ácidos grasos poliinsaturados
title_full Regulación de la supervivencia y diferenciación neuronal por ácidos grasos poliinsaturados
title_fullStr Regulación de la supervivencia y diferenciación neuronal por ácidos grasos poliinsaturados
title_full_unstemmed Regulación de la supervivencia y diferenciación neuronal por ácidos grasos poliinsaturados
title_sort regulación de la supervivencia y diferenciación neuronal por ácidos grasos poliinsaturados
publishDate 2014
url http://repositoriodigital.uns.edu.ar/handle/123456789/527
work_keys_str_mv AT agnolazzadanielal regulaciondelasupervivenciaydiferenciacionneuronalporacidosgrasospoliinsaturados
bdutipo_str Repositorios
_version_ 1764820505953566722
description La retina es el tejido neural que tapiza la parte posterior del ojo. En los vertebrados está constituida por cinco clases de neuronas: los fotorreceptores (conos y bastones), las amacrinas, las horizontales, las ganglionares, y las bipolares. Debido a su relativa simplicidad, accesibilidad y a que los distintos tipos celulares están organizados formando un tejido altamente estructurado, la retina ha sido ampliamente utilizada como tejido modelo de estudio del sistema nervioso central, y es la estructura neural más estudiada. Las neuronas de retina debido a su constante exposición a la luz, su alta tasa metabólica y el alto contenido de ácidos grasos en sus membranas son muy sensibles a sufrir daño oxidativo. Este daño es el responsable de disparar procesos de apoptosis en este tejido. Muchas enfermedades neurodegenerativas de la retina involucran la muerte por apoptosis de las neuronales retinales, y tienen en común que el daño oxidativo es un desencadenante. Este estrés activa vías que involucran a las mitocondrias y conduce a la apoptosis. El conocimiento de los mecanismos por los cuales induce dicha activación es fundamental en el desarrollo de futuras estrategias terapéuticas. Trabajos previos de nuestro laboratorio demuestran que la carencia de factores tróficos durante el desarrollo neuronal in vitro y el estrés oxidativo inducido por PQ inducen la muerte por apoptosis de las neuronas fotorreceptoras. El ácido docosahexaenoico (DHA, 22:6 n-3) es un ácido graso poliinsaturado esencial de la familia de los omega 3, sintetizado a partir del ácido ɑ-linolénico (18:3 n-3) y se encuentra altamente concentrado en las células del sistema nervioso, principalmente en las membranas sinápticas y en los fotorreceptores. El DHA en el sistema nervioso desarrolla múltiples funciones, juega un papel importante en el proceso de fototransducción, en la formación de la memoria, es neuroprotector y puede regular procesos antiinflamatorios. Tradicionalmente al DHA en la retina se lo relaciona con un importante rol estructural, el de favorecer los cambios de conformación inducidos por la luz en la rodopsina, y es indispensable para el adecuado desarrollo de la visión. En nuestro laboratorio, se ha establecido un rol completamente nuevo para el DHA, el de ser un factor de supervivencia previniendo la apoptosis de los fotorreceptores por ausencia de factores tróficos durante su desarrollo in vitro y previniendo la apoptosis inducida por el oxidante Paraquat (PQ). Además hemos establecido que promueve la diferenciación de los fotorreceptores de retina de rata en cultivo. Hemos demostrado que el PQ dispara la apoptosis de las neuronas de retina en cultivo; el aumento de la apoptosis se encuentra en estrecha relación con la pérdida de integridad mitocondrial en las neuronas y se observó que los fotorreceptores son más sensibles que las neuronas amacrinas a la apoptosis inducida por PQ. El H2O2 es un agente oxidante que, a diferencia del PQ, es en sí mismo una especie oxígeno reactiva (ROS) y un mediador fisiológico del daño oxidativo en retina. En nuestro laboratorio también se demostró que el H2O2 induce un aumento de la muerte celular por apoptosis de los fotorreceptores. Es por eso que decidimos investigar en este trabajo de tesis si el DHA también puede prevenir la apoptosis disparada por H2O2, que induce la muerte de las células de retina luego de agotar los sistemas de defensa antioxidante. Para ello suplementamos cultivos neuronales de retina con o sin DHA e indujimos daño oxidativo con H2O2. Evaluamos viabilidad celular con ioduro de propidio y observamos que, al tratar a los cultivos con H2O2, en ausencia de DHA, disminuye la viabilidad celular respecto a los controles. Si previo al tratamiento con H2O2 los cultivos fueron suplementados con DHA el porcentaje de células muertas descendió a niveles comparables con los de los controles. Para determinar el efecto del DHA frente a la apoptosis inducida por H2O2 realizamos el ensayo de TUNEL y vimos un aumento de los fotorreceptores TUNEL+ en los cultivos tratados con H2O2, y una disminución de los mismos en los cultivos preincubados con DHA. Cuantificamos el porcentaje de fotorreceptores con núcleos picnóticos o fragmentados, teñidos con DAPI, para evaluar apoptosis y observamos que el H2O2 provocó un aumento de la apoptosis de los fotorreceptores respecto a los cultivos controles y que el DHA agregado previo al tratamiento con H2O2 previno la apoptosis de los fotorreceptores. Estos resultados, junto con el hecho de que el DHA protege a los fotorreceptores del daño oxidativo inducido por PQ, nos permiten concluir que el DHA es un eficaz protector de las neuronas fotorreceptoras de retina expuestas a distintos tipos de agentes oxidantes. Resultados previos de nuestro laboratorio establecieron que el DHA en cultivos neuronales de retina se incorpora a la membrana de las células, aumenta su concentración en las mismas y tiene la capacidad de activar la vía de la ERK/MAPK y regular la relación de proteínas pro y antiapoptóticas para promover la supervivencia de los fotorreceptores frente al daño oxidativo (Ger)man et al., 2006a;Rotstein et al., 2003. En este trabajo de tesis nos propusimos investigar si el DHA, además de activar las vías de supervivencia citadas, también podría estar ejerciendo su efecto protector actuando como antioxidante. Para determinar si el DHA estaría actuando como un agente antioxidante utilizamos la sonda DCFDA para medir la formación de (ROS en los cultivos y así tener una medición aproximada del daño oxidativo en los cultivos (Halliwell and Whiteman, 2004;Lu et al., 2006). Determinamos el porcentaje de fluorescencia de la sonda DCFDA oxidada respecto al control. Observamos que el porcentaje de fluorescencia aumentó al tratar los cultivos con H2O2, indicando un aumento en la formación de ROS. Observamos también que el DHA disminuyó la formación de ROS disparada por H2O2 en los cultivos neuronales de retina de rata. Para investigar si el DHA estimula enzimas del sistema de defensa antioxidante, determinamos la actividad de la GPx, que participa de la reducción de hidroperóxidos al catalizar la oxidación del Glutatión. Vimos que en cultivos suplementados con DHA previo a inducir daño oxidativo, la actividad de la enzima fue mayor que en los cultivos controles, por lo que el DHA estaría estimulando la actividad de esta enzima. Decidimos medir los niveles de sustancias reactivas con el ácido barbitúrico (TBARS) como indicador de peroxidación lipídica en los cultivos neuronales de retina tratados con H2O2. Observamos que el H2O2 aumentó los niveles de TBARS y por lo tanto la peroxidación lipídica en los cultivos neuronales de retina. Además al suplementar con DHA, independientemente de si se indujo o no estrés oxidativo con H2O2, aumentaron los niveles de TBARS respecto a cultivos sin DHA. De estos resultados se desprende que el DHA, a pesar de aumentar la peroxidación lipídica en los cultivos neuronales, promueve la supervivencia de los fotorreceptores al activar enzimas de defensa antioxidante, como la GPx, y disminuir la formación de ROS. La síntesis de DHA a partir de EPA (Acido eicosapentaenoico, 20:5 n-3) requiere de dos elongaciones que forman TPA (ácido tetracosapentaenoico, 24:5 n-3), que es posteriormente desaturado por la Δ6-desaturasa produciendo THA (ácido tetracosahexaenoico, 24:6 n-3). Finalmente este, por acción de una β-oxidasa peroxisomal, da origen al DHA. Este proceso biosintético requiere de la incorporación de los precursores desde la dieta y es principalmente llevado a cabo en el hígado. El DHA así sintetizado es luego distribuido a distintos tejidos por el sistema circulatorio. Si bien la mayor cantidad de DHA del sistema nervioso proviene de la síntesis hepática y su transporte unido a lipoproteínas de la sangre también ocurre la síntesis in situ, aunque en menor medida. Las enzimas necesarias para la síntesis de DHA están presentes en el ojo, siendo el epitelio pigmentario el sitio donde es más efectivo este proceso de síntesis. Está comprobado que este camino biosintético puede llevarse a cabo en células gliales, pero no se ha demostrado la síntesis del DHA en neuronas. En este camino metabólico el ácido eicosapentaenoico (EPA, 20:5n-3) es un intermediario, y al igual que el DHA, el EPA ha demostrado tener efectos importantes en el cerebro y retina. En retinas de rata alimentadas con dietas ricas en ácidos grasos de la serie n-3 aumenta la relación EPA/AA (EPA/Acido Araquidónico) en los segmentos externos de los fotorreceptores y disminuyen los daños a nivel de dichos segmentos externos cuando se somete a estas ratas a un daño agudo inducido por luz. Por otro lado el aumento de los niveles de EPA plasmático en pacientes humanos sanos se relaciona directamente con el aumento de la densidad del pigmento macular que regula procesos inflamatorios y previene el daño oxidativo previniendo el avance de la degeneración macular. De todos modos, aun se desconocen los mecanismos celulares y moleculares por medio de los cuales el EPA actúa como un agente neuroprotector. Como el EPA ha demostrado tener efectos muy similares a los que se observan con el DHA en diferentes modelos animales y celulares, en esta tesis investigamos si al igual que ocurre con el DHA, la suplementación de cultivos neuronales de retina con EPA es capaz de prevenir la apoptosis inducida por daño oxidativo en los fotorreceptores y promover su diferenciación. También analizamos si el EPA en neuronas de retina aisladas puede actuar como precursor metabólico del DHA, promoviendo su síntesis y si esta síntesis es indispensable para que el EPA actúe como agente neuroprotector y promotor de la diferenciación de los fotorreceptores. Para evaluar si el EPA es capaz de proteger a los FR de la apoptosis inducida por PQ, suplementamos los cultivos con EPA en concentraciones crecientes (2, 3, y 6 μM) y los tratamos con PQ. Evaluamos luego viabilidad celular, con IP y apoptosis por el estudio de la morfología nuclear con DAPI. Tanto en los cultivos controles, como en los suplementados con las distintas concentraciones de EPA se observaron porcentajes bajos de muerte celular y de fotorreceptores apoptóticos. La suplementación con EPA, previa al tratamiento con PQ previno el aumento en la mortalidad celular y en la apoptosis inducida por PQ de los fotorreceptores en una forma dosis dependiente. Determinamos que la concentración 3 μM de EPA era la más efectiva. Confirmamos el efecto protector del EPA 3 μM frente a la apoptosis inducida por PQ en los fotorreceptores utilizando el ensayo de TUNEL. El PQ indujo un aumento de los FR TUNEL + y la adición de EPA previa al tratamiento con PQ disminuyó el número de fotorreceptores TUNEL + a niveles comparables con los de los cultivos controles. Por lo tanto, el EPA, al igual que el DHA actúa como un agente protector frente a la muerte inducida por PQ en los fotorreceptores en cultivos. Esto nos llevó a plantearnos si otros ácidos grasos también podrían actuar de esta manera. Para contestarlo decidimos investigar si los ácidos araquidónico (20:4 n-6, AA), palmítico (16:0, PA) y oleico (18:1 n-9, OA) presentaban efectos antiapoptóticos frente al daño oxidativo inducido con PQ. A diferencia del EPA, ninguno de estos ácidos al ser agregados a los cultivos, evitó los procesos de muerte celular y apoptosis de fotorreceptores desencadenados por el tratamiento con PQ. Podemos afirmar entonces que sólo el EPA y el DHA disminuyen la apoptosis de los fotorreceptores inducida por PQ. Quisimos evaluar si el EPA también podría tener efecto protector frente a otro oxidante como el H2O2. El tratamiento con H2O2 provocó un marcado aumento de la apoptosis, aumentando significativamente el número de fotorreceptores con núcleos picnóticos y mitocondrias despolarizadas. La suplementación de los cultivos con EPA previo al tratamiento con H2O2 previno el aumento del número de fotorreceptores con núcleos picnóticos o fragmentados y mantuvo intacto el potencial de membrana mitocondrial en la mayoría de los fotorreceptores, al igual que en los controles. Estos resultados demuestran el rol protector del EPA frente a la apoptosis inducida por distintos tipo de daño oxidativo inducido a los fotorreceptores en cultivo. Resultados anteriores de nuestro laboratorio establecieron que in vitro, debido a la carencia de factores tróficos, la diferenciación de los fotorreceptores está restringida y en nuestros cultivos, los fotorreceptores, presentan morfología característica de fotorreceptores no diferenciados. El DHA estimula la diferenciación de los fotorreceptores. En este trabajo quisimos ver si el EPA jugaba algún rol en la diferenciación de los fotorreceptores en cultivo. Establecimos que la adición de EPA provocó un aumento de la expresión de opsina en los fotorreceptores y promovió el crecimiento de procesos apicales, rudimentos de los segmentos externos. Por lo que el EPA estimula la diferenciación de los fotorreceptores durante el desarrollo en cultivo. También nos propusimos evaluar si el EPA es capaz de modificar la composición de ácidos grasos de los fosfolípidos de la retina neural. El análisis por GLC de la composición de ácidos grasos de los cultivos neuronales reveló valores de EPA muy bajos en los cultivos controles. Sorprendentemente, no existió una acumulación significativa de este ácido graso en los fosfolípidos luego de la incubación con EPA pero que sí se duplicaron los niveles de DHA. Esto nos llevó a suponer que los fotorreceptores y/o neuronas amacrinas en nuestros cultivos eran capaces de elongar y desaturar al EPA para producir DHA. Para que este proceso metabólico pueda llevarse a cabo es clave la presencia de la enzima Δ6 desaturasa, responsable de la transformación del TPA al THA. Investigamos por técnicas inmunocitoquimicas y western blot si esta enzima se expresa en los cultivos neuronales de retina. El western blot reveló la expresión de la enzima en los cultivos neuronales de retina. La citoquímica mostró que la enzima estaba presente tanto en el citoplasma como en los núcleos de los fotorreceptores y las células amacrinas. Estos resultados demuestran, por primera vez, que las neuronas de retina son capaces de sintetizar DHA a partir de EPA como precursor. El hecho de que el EPA en nuestros cultivos esté promoviendo la síntesis de DHA sumado a que los efectos que presenta son los mismos que se vieron con anterioridad por parte del DHA, nos llevó a plantearnos la hipótesis de que este ácido graso no estuviera actuando por sí mismo, sino como consecuencia de su metabolización a DHA. Para respondernos este interrogante, preincubamos a los cultivos con CP24879 (CP), un inhibidor de las Δ5 y Δ6 desaturasas, antes de suplementarlos con EPA. Como era de esperar, la presencia del inhibidor previno el aumento de los niveles de DHA y condujo a un aumento del contenido de DPA en los cultivos suplementados con EPA. Evaluamos el efecto del agregado de CP sobre la protección del EPA frente al tratamiento con H2O2. El agregado de CP bloqueó por completo el efecto protector del EPA frente a la apoptosis inducida por H2O2, y el porcentaje de fotorreceptores apoptóticos fue el mismo que el que observamos en los cultivos tratados con H2O2 sin EPA. También analizamos si la síntesis de DHA era necesaria para promover la diferenciación de los fotorreceptores. Para ello, investigamos si la incubación con CP afectaba al aumento en la expresión de opsina que provoca el EPA en los cultivos neuronales. El EPA provocó un aumento en la cantidad de fotorreceptores que expresaron opsina, pero la incubación previa con CP bloqueó este efecto y la cantidad de fotorreceptores opsina + en estos cultivos fue comparable con la que observamos en los cultivos controles. Por lo tanto estos resultados indican que la adición de EPA a los cultivos neuronales de retina previene la apoptosis de los fotorreceptores expuestos a condiciones de estrés oxidativo y estimula el avance de la diferenciación de las neuronas fotorreceptoras. También demuestran que al inhibir la actividad de la Δ6 desaturasa, enzima que cataliza la reacción requerida para la síntesis de DHA a partir de EPA, se bloquean los efectos del EPA sobre los fotorreceptores. Esto implica que no es el EPA en sí mismo el que previene la apoptosis y favorece la diferenciación de los FR en cultivo, sino que es el DHA sintetizado a partir del EPA En resumen, las conclusiones más destacadas de este trabajo de tesis son las siguientes:  El DHA previene la muerte por apoptosis inducida por H2O2 de los fotorreceptores en cultivo.  El DHA frena la formación de ROS inducida por H2O2  El agregado de DHA aumenta los niveles de peroxidación lipídica en los cultivos neuronales de retina.  El DHA activa enzimas que participan de los mecanismos de defensas antioxidantes para prevenir la formación de ROS que estimula el H2O2.  El agregado de EPA, y no de otros ácidos grasos, previene la apoptosis inducida por PQ y H2O2, efecto que son comparables al observados al suplementar los cultivos con DHA.  El agregado de EPA promueve la diferenciación de los fotorreceptores durante el desarrollo in vitro, aumentando los niveles de expresión de opsina y la formación de procesos apicales.  Los fotorreceptores de rata en cultivo expresan Δ6 desaturasa, esencial para la síntesis de DHA.  Las neuronas de retina de rata en cultivo son capaces de sintetizar DHA a partir de EPA.  El EPA debe ser metabolizado a DHA para proteger a los fotorreceptores de la apoptosis inducida por estrés oxidativo y para promover la diferenciación de los mismos.