Una contribución al desarrollo de los qM_3-retículos

En esta tesis investigamos la clase de los qM3 retículos y la de los mM3−retículos o M3−retículos monádicos, que son M3−retículos dotados de un cuantificador existencial, en el primer caso, y en el segundo de dos cuantificadores: existencial y universal. También estudiamos la clase de los M3−retí...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Jiménez, María A.
Otros Autores: Figallo, Aldo V.
Formato: tesis doctoral
Lenguaje:Español
Publicado: 2016
Materias:
Acceso en línea:http://repositoriodigital.uns.edu.ar/handle/123456789/3488
Aporte de:
id I20-R126123456789-3488
record_format dspace
institution Universidad Nacional del Sur
institution_str I-20
repository_str R-126
collection Repositorio Institucional Universidad Nacional del Sur (UNS)
language Español
orig_language_str_mv spa
topic Matemáticas
Retículos, teoría de
M_3-retículos con operadores
Dualidades topológicas
Congruencias
Álgebras subdirectamente irreducibles
spellingShingle Matemáticas
Retículos, teoría de
M_3-retículos con operadores
Dualidades topológicas
Congruencias
Álgebras subdirectamente irreducibles
Jiménez, María A.
Una contribución al desarrollo de los qM_3-retículos
topic_facet Matemáticas
Retículos, teoría de
M_3-retículos con operadores
Dualidades topológicas
Congruencias
Álgebras subdirectamente irreducibles
author2 Figallo, Aldo V.
author_facet Figallo, Aldo V.
Jiménez, María A.
format tesis doctoral
author Jiménez, María A.
author_sort Jiménez, María A.
title Una contribución al desarrollo de los qM_3-retículos
title_short Una contribución al desarrollo de los qM_3-retículos
title_full Una contribución al desarrollo de los qM_3-retículos
title_fullStr Una contribución al desarrollo de los qM_3-retículos
title_full_unstemmed Una contribución al desarrollo de los qM_3-retículos
title_sort una contribución al desarrollo de los qm_3-retículos
publishDate 2016
url http://repositoriodigital.uns.edu.ar/handle/123456789/3488
work_keys_str_mv AT jimenezmariaa unacontribucionaldesarrollodelosqm3reticulos
bdutipo_str Repositorios
_version_ 1764820504853610496
description En esta tesis investigamos la clase de los qM3 retículos y la de los mM3−retículos o M3−retículos monádicos, que son M3−retículos dotados de un cuantificador existencial, en el primer caso, y en el segundo de dos cuantificadores: existencial y universal. También estudiamos la clase de los M3−retículos k–cíclicos, que son M3−retículos dotados de un automorfismo de período k. Hemos organizado el trabajo en cinco capítulos, divididos a su vez en secciones y subsecciones en algunos casos. El Capítulo 1 está dividido en cuatro secciones. En las primeras, repasamos resultados principales sobre retículos distributivos y exponemos distintos conceptos de álgebra universal y espacios de Priestley. Todos los resultados indicados son conocidos. Los hemos incluído tanto para facilitar la lectura posterior, como para fijar las definiciones. En la última sección, introducimos los M3−retículos definidos por A. V. Figallo a sugerencia de A. Monterio en Los M3-Reticulados [14], Rev. Colombiana de Matemática, XXI, 1987. En la primera sección del Capítulo 2, indicamos una dualidad topológica para los M3−retículos. En la segunda sección, utilizando la dualidad, caracterizamos el retículo de las congruencias de estas álgebras y determinamos las álgebras simples y subdirectamente irreducibles, reencontrando los resultados que Figallo había establecido de manera algebraica, de una forma diferente, vía la topología. Luego nos dedicamos al estudio de las congruencias principales y booleanas, demostrando que ambas coinciden, están definidas ecuacionalmente (CPDE) y son congruencias regulares y uniformes. Además probamos que la variedad M3, es a congruencias conmutativas, que es una variedad filtral y discriminadora y tiene la propiedad de extensión de congruencias (PEC). El Capítulo 3, está dividido en cuatro secciones. La primera, está dedicada al estudio del sistema determinante de unM3−retículo finito, mostrando que el conjunto ordenado de sus elementos primos, determina la estructura del mismo. En la segunda y tercera sección, indicamos un método para construir los M3−automorfismos y los M3−epimorfismos, cuando se trata de M3−retículos finitos, y determinamos en cada caso el número de los mismos. En la cuarta sección, referida a los M3−retículos k–cíclicos, probamos que la variedad es semisimple y determinamos el cardinal del álgebra libre finitamente generada. Comprobamos con esos resultados que dicha variedad es finitamente generada y localmente finita. Concluimos la sección estableciendo el número de estructuras cíclicas, no isomorfas, que se pueden definir sobre un M3−retículo finito. En el Capítulo 4, en la primera sección definimos los qM3−retículos y estudiamos algunas propiedades válidas en esta clase. En particular, determinamos cómo a partir de una familia especial de subálgebras de un M3−retículo, podemos obtener un cuantificador existencial de modo que lo transforme en un qM3−retículo. En la segunda sección, extendemos la dualidad de Priestley realizada para los M3−retículos con último elemento, al caso de los qM3−retículos acotados. Empleando esta dualidad, en la tercera sección, probamos que la variedad es semisimple y obtenemos una caracterización funcional de los qM3−retículos simples. De igual modo nos abocamos al estudio de las congruencias principales y booleanas, indicando sus propiedades más destacadas. El Capítulo 5, está dedicado a los M3−retículos monádicos. En la primera sección, mostramos propiedades de los mismos y exhibimos la relación existente entre estas álgebras y los M3−retículos k–cíclicos. En la segunda y tercera sección, presentamos una dualidad topológica que nos facilita describir las congruencias, probar que la variedad es semisimple y obtener una caracterización funcional de los mM3−retículos simples. En la última sección, mostramos, con técnicas topológicas, que se puede interrelacionar ambos cuantificadores, a pesar que en estas lgebras no es posible hacerlo de la manera clásica, puesto que la negación de las mismas no se comporta como una negación de De Morgan; lo que nos permite afirmar que todo qM3−retículo es un M3−retículo monádico.