Rol de los mecanismos de remodelación lipídica en modelos celulares de neurodegeneración

La enfermedad de Parkinson (PD) es un desorden progresivo del movimiento y es la segunda enfermedad relacionada con la edad más común, luego de la enfermedad de Alzheimer. Se la considera como un desorden multifactorial y complejo que involucra tanto factores epidemiológicos como genéticos y tox...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Sánchez Campos, Sofía
Otros Autores: Salvador, Gabriela Alejandra
Formato: tesis doctoral
Lenguaje:Español
Publicado: 2017
Materias:
Acceso en línea:http://repositoriodigital.uns.edu.ar/handle/123456789/3332
Aporte de:
id I20-R126123456789-3332
record_format dspace
institution Universidad Nacional del Sur
institution_str I-20
repository_str R-126
collection Repositorio Institucional Universidad Nacional del Sur (UNS)
language Español
orig_language_str_mv spa
topic Bioquímica
Hierro
Enfermedades del sistema nervioso
Metabolismo lipídico
Triglicéridos
α-sinucleína
Enfermedad de Parkinson
spellingShingle Bioquímica
Hierro
Enfermedades del sistema nervioso
Metabolismo lipídico
Triglicéridos
α-sinucleína
Enfermedad de Parkinson
Sánchez Campos, Sofía
Rol de los mecanismos de remodelación lipídica en modelos celulares de neurodegeneración
topic_facet Bioquímica
Hierro
Enfermedades del sistema nervioso
Metabolismo lipídico
Triglicéridos
α-sinucleína
Enfermedad de Parkinson
author2 Salvador, Gabriela Alejandra
author_facet Salvador, Gabriela Alejandra
Sánchez Campos, Sofía
format tesis doctoral
author Sánchez Campos, Sofía
author_sort Sánchez Campos, Sofía
title Rol de los mecanismos de remodelación lipídica en modelos celulares de neurodegeneración
title_short Rol de los mecanismos de remodelación lipídica en modelos celulares de neurodegeneración
title_full Rol de los mecanismos de remodelación lipídica en modelos celulares de neurodegeneración
title_fullStr Rol de los mecanismos de remodelación lipídica en modelos celulares de neurodegeneración
title_full_unstemmed Rol de los mecanismos de remodelación lipídica en modelos celulares de neurodegeneración
title_sort rol de los mecanismos de remodelación lipídica en modelos celulares de neurodegeneración
publishDate 2017
url http://repositoriodigital.uns.edu.ar/handle/123456789/3332
work_keys_str_mv AT sanchezcampossofia roldelosmecanismosderemodelacionlipidicaenmodeloscelularesdeneurodegeneracion
bdutipo_str Repositorios
_version_ 1764820505782648833
description La enfermedad de Parkinson (PD) es un desorden progresivo del movimiento y es la segunda enfermedad relacionada con la edad más común, luego de la enfermedad de Alzheimer. Se la considera como un desorden multifactorial y complejo que involucra tanto factores epidemiológicos como genéticos y toxicológicos, y cuya principal característica es la pérdida progresiva de las neuronas dopaminérgicas. A pesar de los recientes avances que intentan comprender las bases moleculares de esta patología, el mecanismo exacto que desencadena la degeneración de las neuronas dopaminérgicas todavía no se conoce. Numerosos estudios previos destacan dos características comunes de las lesiones de la substancia nigra pars compacta de los cerebros con PD: i) alteraciones en el contenido de los metales de transición y, en consecuencia, aumento del estrés oxidativo (OS) y ii) sobreexpresión y agregación patológica de la proteína α-sinucleína (α-sin). El desbalance en los niveles de los metales de transición ha sido reportado como uno de los principales factores que contribuyen a la degeneración de las neuronas dopaminérgicas en la PD. Específicamente, se ha descripto que la sobrecarga de hierro (Fe) y la desregulación de los niveles de cobre (Cu) estarían involucradas en el daño de las neuronas dopaminérgicas en esta patología. En la primera parte de este trabajo de tesis, nuestro objetivo fue caracterizar los mecanismos de reparación de membrana mediante el estudio de las reacciones de acilación y deacilación y su rol en la injuria oxidativa en la neuronas dopaminérgicas N27 expuestas a sobrecarga de Fe y suplementación con Cu. Las neuronas N27 incubadas en presencia de Fe2+ (1 mM) por 24 hs mostraron elevados niveles de especies reactivas de oxígeno (ROS), peroxidación lipídica y aumentada permeabilidad de membrana plasmática. Por otro lado, en las neuronas que fueron suplementadas con Cu2+ (10,50 μM) no se observaron alteraciones en los marcadores de OS. Se observó un perfil de acilación diferencial en las neuronas N27 premarcadas con [3H]ácido araquidónico (AA) o [3H]ácido oleico (OA). En las neuronas expuestas a Fe2+, la incorporación de AA aumentó en la fracción de triacilglicéridos (TAG), mientras que su incorporación en la fracción de fosfolípidos (PL) se vio disminuida. El contenido de TAG resultó más elevado (40 %) en las neuronas expuestas a Fe2+ que en los controles. Este aumento fue acompañado por la aparición de cuerpos lipídicos Nile Red positivos. En contraposición, la incorporación de OA se vio incrementada en la fracción de PL y no mostró cambios en los TAG. El perfil de acilación lipídica en las neuronas que fueron suplementadas con Cu mostró una mayor acumulación de AA en el PL fosfatidilserina y ningún cambio con respecto a su incorporación en TAG. La inhibición de las reacciones de acilación/deacilación desencadenaron un aumento en los niveles de los marcadores de OS y disfuncionalidad mitocondrial en las neuronas expuestas a sobrecarga de Fe2+. Estos hallazgos brindan evidencia acerca de la participación de los mecanismos de acilación frente a la injuria oxidativa inducida por Fe2+ y postulan que las neuronas dopaminérgicas preservan, inteligentemente, el AA en los TAG en respuesta al OS. Como se mencionó anteriormente, la sobreexpresión patológica de la α-sin está involucrada en la muerte de las neuronas dopaminérgicas en la PD. En la segunda parte de este trabajo, caracterizamos el rol de dos variantes de la α-sin, WT (en su forma nativa) y A53T (una mutación que se encuentra en la PD familiar de aparición temprana), durante el OS inducido por Fe2+ y estudiamos como el metabolismo lipídico estaría involucrado en el destino neuronal. Para ello, utilizamos la línea celular neuronal dopaminérgica N27 sin transfectar (UT) y dos líneas celulares N27 transfectadas de forma estable con WT-α-sin (WT) o A53T-α-sin (A53T). Estas células fueron expuestas a daño inducido por Fe2+ y luego, se analizaron los marcadores de OS y el estado del metabolismo lipídico. Dependiendo del tipo de α-sin expresado, se obtuvieron distintas respuestas neuronales a la sobrecarga de Fe2+. Las células A53T expuestas a injuria inducida por Fe2+ mostraron menores niveles de ROS y menor alteración en la permeabilidad de la membrana plasmática respecto a las neuronas WT. La presencia de A53T-α-sin provocó un aumento en el contenido de TAG, el cual fue aún mayor luego de la exposición de las neuronas a sobrecarga de Fe2+. Por otro lado, las neuronas WT no mostraron alteraciones en el contenido de TAG, respecto a las células UT. Las neuronas A53T también presentaron un aumento en la expresión de la sintasa de ácidos grasos (FAS), junto con una mayor resistencia a la cerulenina, un potente inhibidor de la FAS. El contenido de PL y colesterol (Chol) fue similar en las neuronas UT, WT y A53T. La inhibición farmacológica de la síntesis de novo de los TAG provocó un aumento en la muerte celular de las células A53T durante el daño inducido por Fe2+ mientras que la inhibición de los mecanismos de acilación/deacilación no afectaron ni el contenido de TAG ni la viabilidad celular en la medida en que se afectaron estos parámetros en las células UT. Nuestros resultados brindan nueva evidencia acerca del rol diferencial de las variantes de α-sin en el metabolismo lipídico neuronal, que está relacionado a la respuesta neuronal a la sobrecarga de Fe2+. En conclusión, hemos demostrado que la respuesta neuronal al daño oxidativo y a la sobreexpresión de A53T-α-sin, es dependiente de los mecanismos de acilación/deacilación lipídica e involucra acumulación de TAG. Aunque la inhibición de la síntesis de TAG en las neuronas A53T promueva la muerte celular, nuestros resultados sugieren que la aparición de TAG, algo inusual para el fenotipo neuronal, podría constituir un marcador temprano de daño neuronal.