Nano-ceria en la regeneración de tejido óseo

En la ciencia de los biomateriales empleados en la regeneración de tejido óseo es esencial desarrollar dispositivos implantables que sean tanto biocompatibles como bioactivos. Además, es sabido que la presencia de especies reactivas de oxígeno que conducen al estrés oxidativo celular y, consecuen...

Descripción completa

Detalles Bibliográficos
Autor principal: Gravina, Anabela Noel
Otros Autores: Messina, Paula Verónica
Formato: tesis doctoral
Lenguaje:Español
Publicado: 2016
Materias:
Acceso en línea:http://repositoriodigital.uns.edu.ar/handle/123456789/2870
Aporte de:
id I20-R126123456789-2870
record_format dspace
institution Universidad Nacional del Sur
institution_str I-20
repository_str R-126
collection Repositorio Institucional Universidad Nacional del Sur (UNS)
language Español
orig_language_str_mv spa
topic Química
Cerio
Injertos óseos
Materiales nanoestructurados
spellingShingle Química
Cerio
Injertos óseos
Materiales nanoestructurados
Gravina, Anabela Noel
Nano-ceria en la regeneración de tejido óseo
topic_facet Química
Cerio
Injertos óseos
Materiales nanoestructurados
author2 Messina, Paula Verónica
author_facet Messina, Paula Verónica
Gravina, Anabela Noel
format tesis doctoral
author Gravina, Anabela Noel
author_sort Gravina, Anabela Noel
title Nano-ceria en la regeneración de tejido óseo
title_short Nano-ceria en la regeneración de tejido óseo
title_full Nano-ceria en la regeneración de tejido óseo
title_fullStr Nano-ceria en la regeneración de tejido óseo
title_full_unstemmed Nano-ceria en la regeneración de tejido óseo
title_sort nano-ceria en la regeneración de tejido óseo
publishDate 2016
url http://repositoriodigital.uns.edu.ar/handle/123456789/2870
work_keys_str_mv AT gravinaanabelanoel nanoceriaenlaregeneraciondetejidooseo
bdutipo_str Repositorios
_version_ 1764820505210126339
description En la ciencia de los biomateriales empleados en la regeneración de tejido óseo es esencial desarrollar dispositivos implantables que sean tanto biocompatibles como bioactivos. Además, es sabido que la presencia de especies reactivas de oxígeno que conducen al estrés oxidativo celular y, consecuentemente al retardo en el tiempo de curación de la herida en el sitio de implantación, puede controlarse usando nanopartículas de dióxido de cerio (CeO2) o nanoceria –capaces de alterar su estado de oxidación (de III a IV). En base a estos dos hechos, la presente propuesta se enfoca al diseño de materiales aplicables a la construcción de implantes de tejido óseo basados en dióxido de titanio (TiO2) modificados con nanoceria. El dióxido de titanio es un material generalmente reconocido como biocompatible cuando está presente en la superficie de implantes metálicos de titanio, por lo cual representa un elemento de partida conveniente para el desarrollo de estos nuevos materiales. La presencia de nanoceria permitiría controlar la producción de especies reactivas de oxígeno favoreciendo el crecimiento de nuevo hueso y la biointegración del implante. Para la síntesis de los materiales se emplearon sistemas de microemulsiones agua/butanol/CTAB/heptano como agentes directores de estructura, utilizando isopropóxido de titanio y tripentanoato de cerio como precursores inorgánicos de Ti y Ce, respectivamente. La incorporación del Ce se realizó de dos maneras: disolviendo la sal en el cosurfactante o como nanopartículas de CeO2 suspendidas en la fase oleosa de la microemulsión. Luego de estudiar y optimizar las condiciones de síntesis, se obtuvieron tres materiales: A (TiO2), B (Ce-TiO2) y C (CeO2- TiO2). Asimismo, y como parte del proceso de optimización de las condiciones de síntesis, se evaluó una serie de materiales con contenido creciente de cerio, que se ha dado en llamar B1-B8, por sus condiciones de síntesis análogas a la del material B. Por sus particularidades morfológicas y de almacenamiento de oxígeno, también se dedica una parte de este trabajo de investigación al estudio de sus propiedades. Se estudiaron las propiedades texturales y químicas, lo cual incluye la determinación del tamaño de partículas, el grado de hidrofobicidad, la estructura cristalina, la topografía y tamaños de poro. La capacidad de un material para integrarse con el tejido óseo fue evaluada examinando la interacción con una proteína plasmática modelo, albúmina, y la habilidad del mismo para inducir la formación de hidroxiapatita (HAp) sobre su superficie cuando es sumergido en suero fisiológico simulado, que es una solución cuya concentración de iones es comparable a la del plasma sanguíneo. Como resultado de este ensayo pudo observarse que los materiales A, B y C son capaces de inducir la formación sobre su superficie de una capa de cristales de fosfatos de calcio cuya relación Ca/P es comparable con la de HAp estequiométrica. Debido a que gran parte del daño tisular provocado durante el proceso de implantación es atribuido a la presencia de radicales NO• y O2 •- que son liberados, en condiciones fisiológicas, por macrófagos activados y neutrófilos, resultó interesante evaluar la capacidad de los materiales aquí presentados para eliminar estas especies reactivas de oxígeno. In vivo, la reacción de estos radicales conduce a la formación de peroxinitrito (ONOO-) y peróxido de hidrógeno (H2O2), dos moléculas con alto poder oxidante y, por lo tanto, citotóxicas. Se realizaron ensayos de degradación de estas especies reactivas, observándose que los materiales A, B y C son capaces de acelerar la descomposición de ONOO-; y que B es capaz de descomponer H2O2 en presencia de aniones fosfato mediante dos mecanismos diferentes que son dependientes de la concentración. La biocompatibilidad de los materiales, esto es, su capacidad para interactuar con tejidos vivos sin causar toxicidad o reacciones fisiológicas negativas, es una característica que también fue estudiada en el transcurso de esta tesis. Para ello se realizaron estudios de viabilidad y morfología celular utilizando cultivo primario de osteoblastos de calvaria de rata y una línea celular de fibroblastos de ratón (L929). En ambos casos no se observaron diferencias significativas en la viabilidad luego de 24, 48 y 72 horas de incubación en presencia de los materiales ni tampoco cambios morfológicos en los osteoblastos. El estudio con fibroblastos arrojó algunas diferencias entre los materiales respecto de la supervivencia y la capacidad de adhesión luego de 24 horas de incubación, poniéndose de manifiesto la existencia de una potencial incompatibilidad biológica del material C. Finalmente se evaluó el efecto citoprotector frente al estrés oxidativo inducido por H2O2, con particular hincapié en el material B, debido a sus propiedades bioactivas, biocompatibles y óxido reductoras. El estudio se realizó utilizando fibroblastos de ratón (L929) como modelo celular, observándose un claro aumento en la supervivencia de aquellas células tratadas con B respecto de las células sin tratar y de las tratadas con el material sin cerio (TiO2). Se observó también que el efecto citoprotector es concentración dependiente. De este trabajo se destaca el desarrollo de un material basado en dióxido de titanio y dopado con cerio (material B, Ce-TiO2), obtenido a través de un método sencillo. Este material combina características morfológicas, topográficas y químicas apropiadas que lo convierten en un candidato potencial para su uso en implantes por su capacidad para promover su osteointegración y al mismo tiempo, de proteger al tejido circundante frente al estrés oxidativo producto del proceso de inserción quirúrgico.