Nano-ceria en la regeneración de tejido óseo
En la ciencia de los biomateriales empleados en la regeneración de tejido óseo es esencial desarrollar dispositivos implantables que sean tanto biocompatibles como bioactivos. Además, es sabido que la presencia de especies reactivas de oxígeno que conducen al estrés oxidativo celular y, consecuen...
Autor principal: | |
---|---|
Otros Autores: | |
Formato: | tesis doctoral |
Lenguaje: | Español |
Publicado: |
2016
|
Materias: | |
Acceso en línea: | http://repositoriodigital.uns.edu.ar/handle/123456789/2870 |
Aporte de: |
id |
I20-R126123456789-2870 |
---|---|
record_format |
dspace |
institution |
Universidad Nacional del Sur |
institution_str |
I-20 |
repository_str |
R-126 |
collection |
Repositorio Institucional Universidad Nacional del Sur (UNS) |
language |
Español |
orig_language_str_mv |
spa |
topic |
Química Cerio Injertos óseos Materiales nanoestructurados |
spellingShingle |
Química Cerio Injertos óseos Materiales nanoestructurados Gravina, Anabela Noel Nano-ceria en la regeneración de tejido óseo |
topic_facet |
Química Cerio Injertos óseos Materiales nanoestructurados |
author2 |
Messina, Paula Verónica |
author_facet |
Messina, Paula Verónica Gravina, Anabela Noel |
format |
tesis doctoral |
author |
Gravina, Anabela Noel |
author_sort |
Gravina, Anabela Noel |
title |
Nano-ceria en la regeneración de tejido óseo |
title_short |
Nano-ceria en la regeneración de tejido óseo |
title_full |
Nano-ceria en la regeneración de tejido óseo |
title_fullStr |
Nano-ceria en la regeneración de tejido óseo |
title_full_unstemmed |
Nano-ceria en la regeneración de tejido óseo |
title_sort |
nano-ceria en la regeneración de tejido óseo |
publishDate |
2016 |
url |
http://repositoriodigital.uns.edu.ar/handle/123456789/2870 |
work_keys_str_mv |
AT gravinaanabelanoel nanoceriaenlaregeneraciondetejidooseo |
bdutipo_str |
Repositorios |
_version_ |
1764820505210126339 |
description |
En la ciencia de los biomateriales empleados en la regeneración de tejido óseo es esencial
desarrollar dispositivos implantables que sean tanto biocompatibles como bioactivos. Además, es
sabido que la presencia de especies reactivas de oxígeno que conducen al estrés oxidativo celular y,
consecuentemente al retardo en el tiempo de curación de la herida en el sitio de implantación,
puede controlarse usando nanopartículas de dióxido de cerio (CeO2) o nanoceria –capaces de alterar
su estado de oxidación (de III a IV). En base a estos dos hechos, la presente propuesta se enfoca al
diseño de materiales aplicables a la construcción de implantes de tejido óseo basados en dióxido de
titanio (TiO2) modificados con nanoceria. El dióxido de titanio es un material generalmente
reconocido como biocompatible cuando está presente en la superficie de implantes metálicos de
titanio, por lo cual representa un elemento de partida conveniente para el desarrollo de estos
nuevos materiales. La presencia de nanoceria permitiría controlar la producción de especies
reactivas de oxígeno favoreciendo el crecimiento de nuevo hueso y la biointegración del implante.
Para la síntesis de los materiales se emplearon sistemas de microemulsiones
agua/butanol/CTAB/heptano como agentes directores de estructura, utilizando isopropóxido de
titanio y tripentanoato de cerio como precursores inorgánicos de Ti y Ce, respectivamente. La
incorporación del Ce se realizó de dos maneras: disolviendo la sal en el cosurfactante o como
nanopartículas de CeO2 suspendidas en la fase oleosa de la microemulsión. Luego de estudiar y
optimizar las condiciones de síntesis, se obtuvieron tres materiales: A (TiO2), B (Ce-TiO2) y C (CeO2-
TiO2). Asimismo, y como parte del proceso de optimización de las condiciones de síntesis, se evaluó
una serie de materiales con contenido creciente de cerio, que se ha dado en llamar B1-B8, por sus
condiciones de síntesis análogas a la del material B. Por sus particularidades morfológicas y de
almacenamiento de oxígeno, también se dedica una parte de este trabajo de investigación al estudio
de sus propiedades.
Se estudiaron las propiedades texturales y químicas, lo cual incluye la determinación del
tamaño de partículas, el grado de hidrofobicidad, la estructura cristalina, la topografía y tamaños de
poro. La capacidad de un material para integrarse con el tejido óseo fue evaluada examinando la
interacción con una proteína plasmática modelo, albúmina, y la habilidad del mismo para inducir la
formación de hidroxiapatita (HAp) sobre su superficie cuando es sumergido en suero fisiológico
simulado, que es una solución cuya concentración de iones es comparable a la del plasma
sanguíneo. Como resultado de este ensayo pudo observarse que los materiales A, B y C son capaces
de inducir la formación sobre su superficie de una capa de cristales de fosfatos de calcio cuya
relación Ca/P es comparable con la de HAp estequiométrica. Debido a que gran parte del daño tisular provocado durante el proceso de implantación es
atribuido a la presencia de radicales NO• y O2
•- que son liberados, en condiciones fisiológicas, por
macrófagos activados y neutrófilos, resultó interesante evaluar la capacidad de los materiales aquí
presentados para eliminar estas especies reactivas de oxígeno. In vivo, la reacción de estos radicales
conduce a la formación de peroxinitrito (ONOO-) y peróxido de hidrógeno (H2O2), dos moléculas con
alto poder oxidante y, por lo tanto, citotóxicas. Se realizaron ensayos de degradación de estas
especies reactivas, observándose que los materiales A, B y C son capaces de acelerar la
descomposición de ONOO-; y que B es capaz de descomponer H2O2 en presencia de aniones fosfato
mediante dos mecanismos diferentes que son dependientes de la concentración.
La biocompatibilidad de los materiales, esto es, su capacidad para interactuar con tejidos
vivos sin causar toxicidad o reacciones fisiológicas negativas, es una característica que también fue
estudiada en el transcurso de esta tesis. Para ello se realizaron estudios de viabilidad y morfología
celular utilizando cultivo primario de osteoblastos de calvaria de rata y una línea celular de
fibroblastos de ratón (L929). En ambos casos no se observaron diferencias significativas en la
viabilidad luego de 24, 48 y 72 horas de incubación en presencia de los materiales ni tampoco
cambios morfológicos en los osteoblastos. El estudio con fibroblastos arrojó algunas diferencias
entre los materiales respecto de la supervivencia y la capacidad de adhesión luego de 24 horas de
incubación, poniéndose de manifiesto la existencia de una potencial incompatibilidad biológica del
material C.
Finalmente se evaluó el efecto citoprotector frente al estrés oxidativo inducido por H2O2, con
particular hincapié en el material B, debido a sus propiedades bioactivas, biocompatibles y óxido
reductoras. El estudio se realizó utilizando fibroblastos de ratón (L929) como modelo celular,
observándose un claro aumento en la supervivencia de aquellas células tratadas con B respecto de
las células sin tratar y de las tratadas con el material sin cerio (TiO2). Se observó también que el
efecto citoprotector es concentración dependiente.
De este trabajo se destaca el desarrollo de un material basado en dióxido de titanio y
dopado con cerio (material B, Ce-TiO2), obtenido a través de un método sencillo. Este material
combina características morfológicas, topográficas y químicas apropiadas que lo convierten en un
candidato potencial para su uso en implantes por su capacidad para promover su osteointegración y
al mismo tiempo, de proteger al tejido circundante frente al estrés oxidativo producto del proceso
de inserción quirúrgico. |