Un estudio algebraico de operadores temporales definibles en versiones algebraicas de diversas lógicas
El volumen que aquí presentamos está organizado en cinco capítulos. En el primero se describen resultados conocidos que facilitarán la lectura de la tesis, el mismo no tiene pretenciones de originalidad. El Capítulo 2 está organizado en tres secciones. En la primera sección investigamos la varie...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | |
| Formato: | tesis doctoral |
| Lenguaje: | Español |
| Publicado: |
2015
|
| Materias: | |
| Acceso en línea: | http://repositoriodigital.uns.edu.ar/handle/123456789/2512 |
| Aporte de: |
| id |
I20-R126123456789-2512 |
|---|---|
| record_format |
dspace |
| institution |
Universidad Nacional del Sur |
| institution_str |
I-20 |
| repository_str |
R-126 |
| collection |
Repositorio Institucional Universidad Nacional del Sur (UNS) |
| language |
Español |
| orig_language_str_mv |
spa |
| topic |
Matemáticas Lógica algebraica Lógica matemática Estructuras algebraicas ordenadas |
| spellingShingle |
Matemáticas Lógica algebraica Lógica matemática Estructuras algebraicas ordenadas Pelaitay, Gustavo Andrés Un estudio algebraico de operadores temporales definibles en versiones algebraicas de diversas lógicas |
| topic_facet |
Matemáticas Lógica algebraica Lógica matemática Estructuras algebraicas ordenadas |
| author2 |
Figallo, Aldo V. |
| author_facet |
Figallo, Aldo V. Pelaitay, Gustavo Andrés |
| format |
tesis doctoral |
| author |
Pelaitay, Gustavo Andrés |
| author_sort |
Pelaitay, Gustavo Andrés |
| title |
Un estudio algebraico de operadores temporales definibles en versiones algebraicas de diversas lógicas |
| title_short |
Un estudio algebraico de operadores temporales definibles en versiones algebraicas de diversas lógicas |
| title_full |
Un estudio algebraico de operadores temporales definibles en versiones algebraicas de diversas lógicas |
| title_fullStr |
Un estudio algebraico de operadores temporales definibles en versiones algebraicas de diversas lógicas |
| title_full_unstemmed |
Un estudio algebraico de operadores temporales definibles en versiones algebraicas de diversas lógicas |
| title_sort |
un estudio algebraico de operadores temporales definibles en versiones algebraicas de diversas lógicas |
| publishDate |
2015 |
| url |
http://repositoriodigital.uns.edu.ar/handle/123456789/2512 |
| work_keys_str_mv |
AT pelaitaygustavoandres unestudioalgebraicodeoperadorestemporalesdefiniblesenversionesalgebraicasdediversaslogicas |
| bdutipo_str |
Repositorios |
| _version_ |
1764820504854659074 |
| description |
El volumen que aquí presentamos está organizado en cinco capítulos. En
el primero se describen resultados conocidos que facilitarán la lectura de la
tesis, el mismo no tiene pretenciones de originalidad.
El Capítulo 2 está organizado en tres secciones. En la primera sección investigamos
la variedad de álgebras que hemos denominado álgebras de
De Morgan temporales, como una generalización natural de las álgebras de
Boole temporales. En esta sección nuestro principal interés es la teoría de representación
para esta clase de álgebras. La Sección 2.1 está organizada como
sigue:
En la Subsección 2.1.1 definimos la variedad de las álgebras de
De Morgan temporales, introducimos algunos ejemplos y probamos algunas
propiedades. En la Subsección 2.1.2 damos un teorema de representación para
las álgebras de De Morgan temporales en términos de las álgebras de
De Morgan temporales de conjuntos usando un conocido teorema de representación
para las álgebras de De Morgan. En la Subsección 2.1.3 describimos
una dualidad topológica para las álgebras de De Morgan temporales, extendiendo
la dualidad dada por Cornish y Fowler en [42] para las álgebras de De
Morgan. Finalmente, en la Subsección 2.1.4 caracterizamos el retículo de las
congruencias de estas álgebras en términos de la dualidad antes mencionada
y de ciertos subconjuntos cerrados del espacio asociado con él. Los resultados
de esta sección fueron publicados en
A. V. Figallo, G. Pelaitay. Tense operators on De Morgan algebras. Log. J.
IGPL 22, 2, 255–267. 2014.
La segunda sección está compuesta por dos subsecciones. En la primera
obtenemos una dualidad discreta para las álgebras de Łukasiewicz-Moisil nvaluadas
teniendo en cuenta los resultados indicados por Dzik, Orłowska y
van Alten en 2006 para las álgebras de De Morgan [49]. En la segunda subsección
extendemos la dualidad discreta dada para las álgebras de Łukasiewicz-
Moisil n-valuadas al caso de las álgebras de Łukasiewicz-Moisil n−valuadas
temporales. Los resultados de esta sección fueron publicados en
A. V. Figallo, G. Pelaitay. Discrete duality for tense Łukasiewicz–Moisil algebras.
Fund. Inform., 136. 1–13. 2015.
La tercer sección está dividida en tres subsecciones. En la Subsección
2.3.1 repasamos definiciones y resultados conocidos sobre las álgebras tetravalentes
modales que nos serán de utilidad en las subsecciones siguientes. También
mostramos que las álgebras de De Morgan con implicación definidas por
Kondo en [102] son polinomialmente equivalentes a las álgebras tetravalentes
modales contrapositivas definidas por Figallo y Landini en [58] y estudiadas recientemente
por Coniglio y Figallo en [40]. En la Subsección 2.3.2 obtenemos
dos dualidades discretas diferentes para las álgebras tetravalentes modales. Finalmente,
en la última subsección definimos la variedad de las álgebras tetravalentes
modales temporales como una generalización común de las álgebras de
Boole temporales y las álgebras de Łukasiewicz-Moisil 3−valuadas temporales.
El resultado más importante de esta subsección es la obtención de una dualidad
discreta para esta nueva clase de álgebras.
El Capítulo 3 está organizado en cinco secciones. La primera está dedicada
al estudio de las álgebras de Łukasiewicz-Moisil n ×m−valuadas definidas
por Figallo y Sanza en [60]. Esta sección se divide en cinco subsecciones.
En la Subsección 3.1.1. repasamos un ejemplo que nos permite legitimar
el estudio de las álgebras de Łukasiewicz-Moisil n × m-valuadas. En la
Subsección 3.1.2 recordamos definiciones y resultados que nos serán de utilidad
para lo que sigue. En la Subsección 3.1.3 introducimos nuevos conectivos
de implicación y probamos algunas propiedades básicas de estos conectivos.
En la Subsección 3.1.4 recordamos la definición de álgebra de Łukasiewicz-
Moisil n ×m−valuada monádica. Estas álgebras fueron definidas por Figallo y
Sanza en [69]. Finalmente, en la última subsección definimos la clase de las álgebras
de Łukasiewicz-Moisil n ×m−valuadas poliádicas. Estas álgebras, para
el caso m = 2, coinciden con las álgebras de Łukasiewicz-Moisil n−valuadas
poliádicas [7]. El principal resultado de esta subsección es un teorema de representación
para las álgebras de Łukasiewicz-Moisil n ×m−valuadas poliádicas.
La Sección 3.2 está dedicada al estudio de las álgebras de Łukasiewicz-
Moisil temporales débiles definidas por Figallo y Pelaitay en [78]. Esta sección
está dividida en cuatro subsecciones.
En la Subsección 3.2.1 introducimos la variedad de las álgebras de
Łukasiewicz-Moisil temporales débiles como una generalización común de las
álgebras de Boole temporales débiles y de las álgebras de Łukasiewicz-Moisil
n−valuadas temporales débiles. En la Subsección 3.2.2, basados en la noción
de marco débil, damos un ejemplo de álgebra de Łukasiewicz-Moisil temporal
débil que será de utilidad en lo que sigue. En la Subsección 3.2.3 probamos
un teorema de representación para las álgebras de Łukasiewicz-Moisil temporales
débiles. Finalmente, en la última subsección nos dedicamos al estudio de
las congruencias en un álgebra de Łukasiewicz-Moisil n ×m−valuada temporal
débil. Estos resultados nos permitieron caracterizar las álgebras simples y
subdirectamente irreducibles de la variedad antes mencionada.
La Sección 3.3 está dedicada al estudio de las álgebras de Łukasiewicz-
Moisil n ×m−valuadas temporales definidas por Figallo y Pelaitay en [79]. Esta
sección está dividida en cuatro subsecciones.
En la Subsección 3.3.1 introducimos la variedad de las álgebras de
Łukasiewicz-Moisil temporales como una generalización común de las álgebras
de Boole temporales y de las álgebras de Łukasiewicz-Moisil n−valuadas
temporales. En la Subsección 3.3.2, basados en la noción de marco, damos un
ejemplo de álgebra de Łukasiewicz-Moisil temporal que será de utilidad en lo
que sigue. En la Subsección 3.3.3, probamos un teorema de representación para
las álgebras de Łukasiewicz-Moisil temporales; como corolario de este teorema
obtenemos el teorema de representación dado porDiaconescu yGeorgescu
en [43] para las álgebras de Łukasiewicz-Moisil n−valuadas temporales. Finalmente,
en la última subsección nos dedicamos al estudio de las congruencias
en un álgebra de Łukasiewicz-Moisil n ×m-valuada temporal. Estos resultados
nos permitieron caracterizar las álgebras simples y subdirectamente irreducibles
de la variedad antes mencionada.
La Sección 3.4 está dedicada al estudio de las álgebras de Łukasiewicz-
Moisil n ×m−valuadas poliádicas temporales débiles. Esta sección está dividida
en dos subsecciones.
En la Subsección 3.4.1 introducimos la clase de las álgebras de
Łukasiewicz-Moisil n ×m−valuadas poliádicas temporales débiles como una
generalización común de las álgebras de Boole poliádicas temporales débiles y
las álgebras de Łukasiewicz-Moisil n−valuadas poliádicas temporales débiles.
También, basados en la noción de sistema temporal débil, damos un ejemplo
de álgebra de Łukasiewicz-Moisil n ×m−valuada poliádica temporal débil. El
resultado más importante de la segunda subsección es un teorema de representación
para las álgebras de Łukasiewicz-Moisil temporales débiles.
En la última subsección definimos la clase de las álgebras de Łukasiewicz-Moisil n×m−valuadas poliádicas temporales y damos un ejemplo basándonos
en la noción de sistema temporal.
Algunos de los resultados de este capítulo han sido aceptados para su
publicación en
A. V. Figallo, G. Pelaitay. A representation theorem for tense n ×m−valued
Łukasiewicz–Moisil algebras.Mathematica Bohemica. 2015.
A. V. Figallo, G. Pelaitay. n ×m-valued Łukasiewicz–Moisil algebras with
two modal operators. South American Journal of Logic. 2015.
También han sido presentados y expuestos en
A. V. Figallo, G. Pelaitay. Operadores temporales sobre álgebras de
Łukasiewicz-Moisil n ×m-valuadas, Actas del XII Congreso Dr. Antonio
Monteiro, UNS, Bahía Blanca, Argentina, (2013), 31-32.
El Capítulo 4 está organizado en tres secciones. La primera sección está
dedicada al estudio de operadores temporales sobre álgebras de Heyting. Esta
sección se divide en seis subsecciones. En la primera subsección mostramos
que la axiomatización algebraica dada por Chajda en [24] de los operadores
temporales F y P en la lógica intuicionista no se ajusta a la definición de
Halmos de cuantificador existencial. En la segunda subsección introducimos
la variedad de las I K t −álgebras, mostramos algunos ejemplos y probamos algunas
propiedades. En la tercera subsección probamos que el sistema IKt de la
lógica temporal intuicionista introducido por Ewald en [52], tiene a las I K t −álgebras
como contraparte algebraica. En la cuarta subsección describimos una
dualidad discreta para las I K t −álgebras teniendo en cuenta los resultados indicados
por Orłowska y Rewitzky en [124] para las álgebras de Heyting. En la
quinta subsección damos una construcción general de los operadores temporales
sobre un álgebra de Heyting completa por medio de los llamados marcos
de Heyting. Finalmente, en la última subsección introducimos la noción de
sistema deductivo temporal, la cual nos permite determinar el retículo de las
congruencias en una I K t −álgebra y caracterizar las álgebras simples y subdirectamente
irreducibles de la variedad IKt.
Los resultados de esta sección fueron publicados en
A. V. Figallo, G. Pelaitay. Remarks onHeyting algebras with tense operators.
Bull. Sect. Logic Univ. Lódz 41, 1–2, 71–74. 2012.
A. V. Figallo, G. Pelaitay. An algebraic axiomatization of the Ewald’s intuitionistic
tense logic. Soft Computing. 18, 10, 1873–1883. 2014.
También han sido presentados en
A. V. Figallo, G. Pelaitay.Una axiomatización algebraica del sistema IKt, IV
Congreso Lationoamericano deMatemáticos, Córdoba, 2012.
A. V. Figallo, G. Pelaitay. An algebraic axiomatization of IKt system, 6th
Workshop on IntuitionisticModal Logic and Applications, Rio de Janeiro,
Brazil, 2013.
La segunda sección está dedicada al estudio de operadores temporales
sobre álgebras de Heyting simétricas. Esta sección está dividida en tres subsecciones.
En la primera definimos la variedad de las álgebras de Heyting simétricas
temporales, damos un ejemplo y probamos algunas propiedades. En la segunda
subsección obtenemos una dualidad discreta para las álgebras de
Heyting simétricas temporales teniendo en cuenta las indicadas en [49] para
las álgebras de De Morgan y en [124] para las álgebras de Heyting. En la tercer
subsección describimos un cálculo proposicional que tiene a las álgebras de
Heyting simétricas temporales como contraparte algebraica. Los resultados de
esta sección fueron publicados en
A. V. Figallo, G. Pelaitay, C. Sanza.Discrete duality for TSH−algebras. Commun.
KoreanMath. Soc., 27, 1, 47–56. 2012.
30
También fueron presentados y expuestos en
A.V. Figallo, G. Pelaitay, C. Sanza. Operadores temporales sobre álgebras
de Heyting simétricas. LIX Reunión Anual de la Unión Matemática Argentina.
Índice de Comunicaciones Científicas. Mar del Plata, Septiembre
2009.
A.V. Figallo, G. Pelaitay, C. Sanza. Una dualidad discreta para las álgebras
deHeyting simétricas temporales. LX Reunión Anual de laUniónMatemática
Argentina. Índice de Comunicaciones Científicas. Tandil, Septiembre
2010. La tercera sección está dedicada al estudio de operadores temporales sobre
álgebras de Heyting simétricas de orden n (o SHn−álgebras para abreviar) .
Esta sección está dividida en tres subsecciones. En la primera subsección definimos
la variedad de las SHn-álgebras temporales, damos un ejemplo y probamos
algunas propiedades. En la segunda subsección obtenemos una dualidad
discreta para las SHn-álgebras temporales teniendo en cuenta las indicadas en
[124] para las SHn-álgebras. En la tercera subsección describimos un cálculo
proposicional que tiene a las SHn-álgebras temporales como contraparte algebraica.
Los resultados de esta sección fueron publicados en:
A. V. Figallo, G. Pelaitay. Tense operators on SHn-algebras. Pioneer Journal
of Algebra, Number Theory and its Applications. 1, 1, 33–41. 2011.
A. V. Figallo, G. Pelaitay. Note on tense SHn-algebras. An.Univ. Craiova Ser.
Mat. Inform., 38, 4, 24–32. 2011.
También fueron presentados y expuestos en:
A. V. Figallo, G. Pelaitay. Tense operators on SHn−algebras, 16th Brazilian
Logic Conference, Petropolis, Brazil, 2011.
El Capítulo 5 consiste en una breve enumeración de los posibles desarrollos
futuros. |