Teoría de la representación para las álgebras de Hilbert y para las álgebras de Hilbert con operadores modales
Esta tesis tiene dos objetivos fundamentales. El primer objetivo es presentar y desa- rrollar una representación y dualidad topológica para variedades de álgebras que corres- ponden a los reductos {→} y {→, ∨} de la variedad de las álgebras de Heyting. Estas representaciones están basadas en un c...
Autor principal: | |
---|---|
Otros Autores: | |
Formato: | tesis doctoral |
Lenguaje: | Español |
Publicado: |
2015
|
Materias: | |
Acceso en línea: | http://repositoriodigital.uns.edu.ar/handle/123456789/2507 |
Aporte de: |
id |
I20-R126123456789-2507 |
---|---|
record_format |
dspace |
institution |
Universidad Nacional del Sur |
institution_str |
I-20 |
repository_str |
R-126 |
collection |
Repositorio Institucional Universidad Nacional del Sur (UNS) |
language |
Español |
orig_language_str_mv |
spa |
topic |
Matemáticas Álgebras de Hilbert Representación topológica Operadores modales |
spellingShingle |
Matemáticas Álgebras de Hilbert Representación topológica Operadores modales Montangie, Lidia Daniela Teoría de la representación para las álgebras de Hilbert y para las álgebras de Hilbert con operadores modales |
topic_facet |
Matemáticas Álgebras de Hilbert Representación topológica Operadores modales |
author2 |
Celani, Sergio |
author_facet |
Celani, Sergio Montangie, Lidia Daniela |
format |
tesis doctoral |
author |
Montangie, Lidia Daniela |
author_sort |
Montangie, Lidia Daniela |
title |
Teoría de la representación para las álgebras de Hilbert y para las álgebras de Hilbert con operadores modales |
title_short |
Teoría de la representación para las álgebras de Hilbert y para las álgebras de Hilbert con operadores modales |
title_full |
Teoría de la representación para las álgebras de Hilbert y para las álgebras de Hilbert con operadores modales |
title_fullStr |
Teoría de la representación para las álgebras de Hilbert y para las álgebras de Hilbert con operadores modales |
title_full_unstemmed |
Teoría de la representación para las álgebras de Hilbert y para las álgebras de Hilbert con operadores modales |
title_sort |
teoría de la representación para las álgebras de hilbert y para las álgebras de hilbert con operadores modales |
publishDate |
2015 |
url |
http://repositoriodigital.uns.edu.ar/handle/123456789/2507 |
work_keys_str_mv |
AT montangielidiadaniela teoriadelarepresentacionparalasalgebrasdehilbertyparalasalgebrasdehilbertconoperadoresmodales |
bdutipo_str |
Repositorios |
_version_ |
1764820504849416194 |
description |
Esta tesis tiene dos objetivos fundamentales. El primer objetivo es presentar y desa-
rrollar una representación y dualidad topológica para variedades de álgebras que corres-
ponden a los reductos {→} y {→, ∨} de la variedad de las álgebras de Heyting. Estas
representaciones están basadas en un clase particular de espacios topológicos conocidos
como espacios sober. Es un hecho bien conocido que toda álgebra de Heyting es repre-
sentable como subálgebra del álgebra de Heyting de todos los subconjuntos crecientes
de un conjunto ordenado. También es sabido que un álgebra de Heyting es representa-
ble como una subálgebra del conjunto de todos los abiertos de un espacio topológico T0.
Estas representaciones tienen muchas aplicaciones tanto en el estudio algebraico de es-
tas estructuras como en las aplicaciones de la l ógica intuicionista Int y algunas de sus
extensiones. Además, estas representaciones son la base para las conocidas dualidades
topológicas de Priestley y de Stone para las álgebras de Heyting. Cuando miramos algún
subreducto de las álgebras de Heyting, como por ejemplo, en las álgebras que correspon-
den al fragmento implicativo, conocidas como álgebras de Hilbert, la teoría de represen-
tación y dualidad desarrollada para las álgebras de Heyting no es directamente aplicable a
estos fragmentos. El primer resultado que conocemos sobre representación de un álgebra
de Hilbert se encuentra en la tesis de A. Diego [29]. En dicha tesis aparece un teorema
de representación tipo Stone, pero este resultado no tuvo un impacto muy significativo
ya que es insuficiente para desarrollar una dualidad categórica. El primer objetivo de esta
tesis es, justamente, presentar una dualidad topológica completa para las álgebras de Hil-
bert y extender esta dualidad a la variedad de las álgebras de Hilbert con supremo. Estos
resultados están basados en los espacios topológicos conocidos como espacios sober y
extienden a los dados por M. Stone [67]. Primero probamos que la categor´ıa formada por
álgebras de Hilbert con semi-homomorfismos como morfismos es dualmente equivalente
a la categoría de espacios de Hilbert con ciertas relaciones binarias. También obtenemos
una dualidad para las álgebras de Hilbert con homomorfismos. Aplicamos estos resulta-
dos para demostrar que el retículo de sistemas deductivos de un álgebra de Hilbert y el
ret´ıculo de subconjuntos abiertos de su espacio de Hilbert dual, son isomorfos. Explo-
ramos cómo esta dualidad está relacionada con la dada en [18] para álgebras de Hilbert
finitas, y con la dualidad topológica desarrollada en [19] para álgebras de Tarski. Todos
estos resultados son presentados en el Capítulo 3.
La otra variedad asociada a un fragmento de la lógica Int que estudiamos es la va-
riedad de las álgebras de Hilbert con supremo, i.e., álgebras de Hilbert donde el orden
asociado es un supremo-semiret´ıculo. Extendemos la dualidad encontrada para las álge-
bras de Hilbert al caso de las álgebras de Hilbert con supremo. Probamos que el conjunto
ordenado de todos los ideales de un álgebra de Hilbert con supremo tiene estructura de
retículo. Demostramos que en este retículo es posible definir una implicación, pero la
estructura resultante no es un álgebra de Heyting ni tampoco es un semiretículo implica-
tivo. Damos una descripción dual para el retículo de ideales de un álgebra de Hilbert con
supremo. Estos resultados son presentados en el Capítulo 5.
El segundo objetivo fundamental de esta memoria está centrado en estudiar algunas
extensiones modales de las álgebras de Hilbert y de las álgebras de Hilbert con supre-
mo. Estas extensiones corresponden a fragmentos de algunas extensiones modales de la
l ógica intuicionista Int. En esta memoria nos hemos centrado únicamente en dos frag-
mentos. Primero introducimos la variedad de álgebras de Hilbert con un operador mo-
dal , llamadas H -álgebras. La variedad de H -álgebras es la contraparte algebraica
del {→, }-fragmento de la lógica modal intuicionista IntK , al cual denotamos con
IntK→. Estudiamos la teoría de representación y damos una dualidad topológica para la
variedad de H -álgebras. Aplicamos estos resultados para probar que la l ógica modal
implicativa IntK→ es canónica y por lo tanto es completa. Determinamos las álgebras
simples y subdirectamente irreducibles en algunas subvariedades de H -álgebras. Tam-
bien estudiamos una interesante variedad de álgebras, llamadas álgebras de Hilbert Lax.
Todos estos resultados son presentados en el Caíıtulo 4.
El otro fragmento que investigamos es el fragmento {→, ∨, ♦} de la lógica modal in-
tuicionista IntK♦. Introducimos y estudiamos la variedad de H∨ ♦ -álgebras, las cuales son
álgebras de Hilbert con supremo enriquecidas con un operador modal ♦. Damos una re-
presentación topológica para estas álgebras usando la representación topológica obtenida
para las álgebras de Hilbert con supremo. Consideramos algunas subvariedades particula-
res de H∨ ♦ -álgebras. Estas variedades son la contraparte algebraica de algunas extensiones
del fragmento implicativo de la l ógica modal intuicionista IntK♦. Usamos la representa-
ción topológica obtenida para lasH∨ ♦ -álgebras para probar que la l ógica modal implicativa
IntK→ ♦ es canónica, y en consecuencia la lógica IntK→ ♦ es completa. Tambi´en determi-
namos las congruencias de las H∨ ♦ -álgebras en términos de ciertos subconjuntos cerrados
del espacio asociado, y en términos de una clase particular de sistemas deductivos. Es-
tos resultados nos permitieron caracterizar las H∨ ♦ -álgebras simples y subdirectamente
irreducibles. Estos resultados son presentados en el Capítulo 6. |