Las diacilglicerol quinasas en los núcleos de las células fotorreceptoras de la retina bovina : efectos de la luz y la insulina

El diacilglicerol (DAG) es un importante intermediario en la síntesis de muchas clases de lípidos, y es, además, un segundo mensajero producido en respuesta a diversos estímulos extracelulares, capaz de modular la actividad de numerosas enzimas. Una de las vías de metabolización del DAG es la fos...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Natalini, Paola Marisel
Otros Autores: Ilincheta, Mónica Graciela
Formato: tesis doctoral
Lenguaje:Español
Publicado: 2015
Materias:
Luz
Acceso en línea:http://repositoriodigital.uns.edu.ar/handle/123456789/2325
Aporte de:
id I20-R126123456789-2325
record_format dspace
institution Universidad Nacional del Sur
institution_str I-20
repository_str R-126
collection Repositorio Institucional Universidad Nacional del Sur (UNS)
language Español
orig_language_str_mv spa
topic Bioquímica
Retina
Núcleos
Diacilglicerol quinasas
Luz
Insulina
spellingShingle Bioquímica
Retina
Núcleos
Diacilglicerol quinasas
Luz
Insulina
Natalini, Paola Marisel
Las diacilglicerol quinasas en los núcleos de las células fotorreceptoras de la retina bovina : efectos de la luz y la insulina
topic_facet Bioquímica
Retina
Núcleos
Diacilglicerol quinasas
Luz
Insulina
author2 Ilincheta, Mónica Graciela
author_facet Ilincheta, Mónica Graciela
Natalini, Paola Marisel
format tesis doctoral
author Natalini, Paola Marisel
author_sort Natalini, Paola Marisel
title Las diacilglicerol quinasas en los núcleos de las células fotorreceptoras de la retina bovina : efectos de la luz y la insulina
title_short Las diacilglicerol quinasas en los núcleos de las células fotorreceptoras de la retina bovina : efectos de la luz y la insulina
title_full Las diacilglicerol quinasas en los núcleos de las células fotorreceptoras de la retina bovina : efectos de la luz y la insulina
title_fullStr Las diacilglicerol quinasas en los núcleos de las células fotorreceptoras de la retina bovina : efectos de la luz y la insulina
title_full_unstemmed Las diacilglicerol quinasas en los núcleos de las células fotorreceptoras de la retina bovina : efectos de la luz y la insulina
title_sort las diacilglicerol quinasas en los núcleos de las células fotorreceptoras de la retina bovina : efectos de la luz y la insulina
publishDate 2015
url http://repositoriodigital.uns.edu.ar/handle/123456789/2325
work_keys_str_mv AT natalinipaolamarisel lasdiacilglicerolquinasasenlosnucleosdelascelulasfotorreceptorasdelaretinabovinaefectosdelaluzylainsulina
bdutipo_str Repositorios
_version_ 1764820504699469827
description El diacilglicerol (DAG) es un importante intermediario en la síntesis de muchas clases de lípidos, y es, además, un segundo mensajero producido en respuesta a diversos estímulos extracelulares, capaz de modular la actividad de numerosas enzimas. Una de las vías de metabolización del DAG es la fosforilación llevada a cabo por las DAGK, para dar ácido fosfatídico (PA). El ácido fosfatídico es también un importante segundo mensajero lipídico involucrado en una gran variedad de respuestas celulares. Dada la importancia fisiológica del DAG y del PA como segundos mensajeros lipídicos, y, teniendo en cuenta los numerosos resultados que indican la presencia de las vías de señalización responsables de la síntesis y degradación de estos segundos mensajeros a nivel nuclear, iniciamos nuestros estudios analizando la actividad de las DAGK en los núcleos de la retina bovina, proyectando la investigación hacia la interpretación de su participación en las funciones esenciales de la retina, la recepción y transmisión de la luz. Además, analizamos a nivel nuclear, en las células fotorreceptoras de la retina, los efectos de la insulina, un reconocido protector del sistema nervioso central (SNC) y modulador de la actividad DAGK en otros tipos celulares del SNC. Mediante un protocolo diseñado en nuestro laboratorio, obtuvimos a partir de la retina entera una fracción nuclear enriquecida en los núcleos de las células fotorreceptoras (FNF). En esta fracción nuclear, se pudo detectar actividad DAGK, transformadora del DAG endógeno y exógeno. Se determinó linealidad en función del tiempo de ensayo, el contenido proteico de la fracción nuclear y se analizaron parámetros cinéticos aparentes (Km y Vmax para cada sustrato). Los resultados con detergentes y sustratos diferentes permitieron sugerir la coexistencia de varios tipos de DAGK. Esto fue confirmado por Western Blot (WB) y se detectaron, además, efectos significativos en el contenido nuclear de estas isoformas por efecto de la luz (aumento de la DAGKδ y disminución de las DAGKe, ß y B). Nuestros hallazgos se reforzaron con ensayos enzimáticos en los que se utilizaron condiciones selectivas (preferenciales) para medir la actividad de las isoformas δ y e.En ellos se observó, por efecto de la exposición de la retinas a la luz, una fuerte correlación entre los cambios en el contenido y la actividad de ambas isoformas en la FNF. Se demostró asimismo que el aumento de la actividad DAGK nuclear en respuesta a la luz es dependiente de la actividad PIP2-PLC, y se observó que dicho incremento en la condición lumínica no es debido exclusivamente a un aumento del sustrato de la reacción enzimática, DAG, sino que también participa en la activación el PIP2. También demostramos la presencia de la PKCα en la FNF, PKC de tipo convencional que es activada en presencia de Ca2+ y DAG. La exposición de las retinas a la luz produjo un aumento del estado de fosforilación de la PKCα. Dado que la fosforilación de PKC puede ser mediada por la activación de PDK1, que es dependiente de la activación previa de PI3K, enzima participante de la vía de señalización de insulina, el siguiente objetivo fue determinar la presencia de los principales componentes de las vías de señalización de insulina en la FNF. Nuestros resultados demostraron la presencia de Akt total y en su estado fosforilado (proteína quinasa de la via de la PI3K), y de ERK1/2, pERK1/2 y p38 fosforilada (quinasas correspondientes a la vía de las MAPK). Nuestros estudios demostraron, además, que la exposición de las retinas bovinas a la luz produce un aumento en el estado de fosforilación de Akt, y que induce la translocación de ERK1/2 activada a la FNF. Por otro lado, al analizar los efectos directos e indirectos de la insulina sobre la actividad DAGK nuclear en la FNF de retinas expuestas a la luz o a la oscuridad, fue posible demostrar que la insulina es capaz de modular la actividad DAGK nuclear tanto de forma directa (incubación de los núcleos aislados con insulina) como de manera indirecta (incubación de las retinas bovinas con insulina y posterior análisis de la actividad DAGK en la FNF). Además, se observó que la insulina cumple un rol en los cambios de la actividad DAGK nuclear en respuesta a la luz, y que los efectos de la insulina sobre la actividad DAGK son dependientes de su concentración (los efectos se incrementan con un aumento concomitante de la concentración de insulina empleada en el ensayo enzimático). Teniendo en cuenta los efectos directos de la insulina sobre la actividad DAGK nuclear, analizamos la presencia del receptor de insulina en la FNF por WB e inmunofluorescencia (IF) y demostramos la presencia del mismo en los núcleos de las células fotorreceptoras. Un hallazgo de particular interés fue el de haber demostrado que el contenido del RI aumenta en la FNF cuando las retinas bovinas son expuestas a la luz, lo cual sugiere que la luz puede ser un estímulo capaz de promover la translocación del RI al núcleo de las células fotorreceptoras. Por último, analizamos si la insulina es capaz de participar en la translocación del receptor de insulina al núcleo de las células fotorreceptoras y de mediar la activación de las vías de señalización activadas por la misma a nivel nuclear. Nuestros resultados indicaron que la insulina produce un aumento en el contenido del receptor de insulina nuclear con respecto a la condición luz en ausencia de hormona. Además, la insulina produjo un aumento de ERK1/2 activado en la FNF. En conclusión, nuestros resultados demostraron por primera vez que la exposición de las retinas bovinas a su estímulo natural, la luz, paralelamente a la activación de la típica vía de la fototransducción que se inicia en los segmentos externos, induce a nivel nuclear, la activación de distintas vías de señalización responsables de funciones críticas para la célula, y que a nivel nuclear, pueden intervenir en la transcripción de genes. Nuestros resultados demostraron también que la luz y la insulina son capaces de intervenir en la translocación del receptor de insulina desde la membrana plasmática hacia el núcleo de las células fotorreceptoras, y que la insulina promueve la activación de vías de señalización tanto de forma indirecta, actuando sobre la retina entera, como directa a nivel nuclear, sugiriendo para este último caso que mediaría sus efectos a través de la población nuclear de dicho receptor.