Espinelas de Mn-Ni : preparación por diversos métodos, caracterización estructural y estudio de sus propiedades

Los óxidos complejos de manganeso han despertado actual-mente un gran interés en varias estructuras con diferentes estados de oxidación y coordinación del Mn, por ejemplo en perovskitas, espinelas, o pirocloros. Estas manganitas presen-tan un amplio rango de propiedades eléctricas y magnéticas (magn...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Diez, Alejandra Silvina
Otros Autores: Sagua, Aurora Estela
Formato: tesis doctoral
Lenguaje:Español
Publicado: 2010
Materias:
Acceso en línea:http://repositoriodigital.uns.edu.ar/handle/123456789/2111
Aporte de:
id I20-R126123456789-2111
record_format dspace
institution Universidad Nacional del Sur
institution_str I-20
repository_str R-126
collection Repositorio Institucional Universidad Nacional del Sur (UNS)
language Español
orig_language_str_mv spa
topic propiedades magnéticas
óxidos mixtos
propiedades eléctricas
spellingShingle propiedades magnéticas
óxidos mixtos
propiedades eléctricas
Diez, Alejandra Silvina
Espinelas de Mn-Ni : preparación por diversos métodos, caracterización estructural y estudio de sus propiedades
topic_facet propiedades magnéticas
óxidos mixtos
propiedades eléctricas
author2 Sagua, Aurora Estela
author_facet Sagua, Aurora Estela
Diez, Alejandra Silvina
format tesis doctoral
author Diez, Alejandra Silvina
author_sort Diez, Alejandra Silvina
title Espinelas de Mn-Ni : preparación por diversos métodos, caracterización estructural y estudio de sus propiedades
title_short Espinelas de Mn-Ni : preparación por diversos métodos, caracterización estructural y estudio de sus propiedades
title_full Espinelas de Mn-Ni : preparación por diversos métodos, caracterización estructural y estudio de sus propiedades
title_fullStr Espinelas de Mn-Ni : preparación por diversos métodos, caracterización estructural y estudio de sus propiedades
title_full_unstemmed Espinelas de Mn-Ni : preparación por diversos métodos, caracterización estructural y estudio de sus propiedades
title_sort espinelas de mn-ni : preparación por diversos métodos, caracterización estructural y estudio de sus propiedades
publishDate 2010
url http://repositoriodigital.uns.edu.ar/handle/123456789/2111
work_keys_str_mv AT diezalejandrasilvina espinelasdemnnipreparacionpordiversosmetodoscaracterizacionestructuralyestudiodesuspropiedades
bdutipo_str Repositorios
_version_ 1764820505189154819
description Los óxidos complejos de manganeso han despertado actual-mente un gran interés en varias estructuras con diferentes estados de oxidación y coordinación del Mn, por ejemplo en perovskitas, espinelas, o pirocloros. Estas manganitas presen-tan un amplio rango de propiedades eléctricas y magnéticas (magnetorresistencia colosal, ferromagnetismo, orden de carga y otras más), las cuales pueden ser debidas al estado de valencias mixtas del manganeso. La manganita de Níquel, NiMn2O4 exhibe una estructura de espinela cúbica parcialmente inversa, la cual es bien conocida desde muchos años. La NiMn4w es añiamente usada en la industria para la producción de sensores de temperatura cerámicos debido a sus propiedades eléctricas caracterizadas por un coeficiente de temperatura negativo (NTC) de los semiconductores de resistencia eléctrica. Se pueden utilizar diversos dopantes pa-ra mejorar la eficacia de los sensores. A pesar de su aparente estructura de espinela y fórmula química simple, este material es sorpresivamente complejo y hoy en día conserva interés debido a sus diferentes rutas de preparación y en diferentes formas: polvos, películas delgadas y monocristales. La comple-jidad de estos compuestos se debe parcialmente a la varia-bilidad de las posiciones de Ni y Mn en las subredes crista-linas. Ambos cationes pueden ocupar sitios tetraédricos y octaédricos, los cuales son sitios intersticiales dentro de un empaquetamiento cúbico compacto de oxígenos de la estructura de la espinela.La fracción de Ni ocupando sitios octaédricos corresponde al parámetro de inversión ν de la estructura de espinela cúbica, lo cual influye fuertemente sobre el número de oxidación del Mn. La fracción de Ni que se mueve a un sitio octaédrico se compensa por el movimiento del Mn al sitio tetraédrico. El Mn en posición tetraédrica tiene un número de oxidación de +2, debido a que el Mn3+ es desfavorable en coordinación tetraédrica. La formación del Mn2+ tetraédrico se compensa por igual cantidad de Mn4+ en sitios octaédricos en orden de mantener el balance de cargas, y en consecuencia una desproporción interna. Las fuerzas conductoras para este proceso de desproporción son: (1) la preferencia de los iones Ni2+ por los sitios octaédricos, (2) en coordinación octaédrica el número de oxidación preferencial del Mn es +4 (t2g3): un incremento en la cantidad de Mn3+ octaédricos (t2g3 eg1) conducirá a una distorsión de red Jahn-Teller, energéticamente desfavorable, produciendo una espinela de simetría tetragonal. En la literatura encontramos que el grado de inversión, ν, es dependiente de la síntesis o de la temperatura de sinterizado. Tanto ν como el número de oxidación del Mn dependen de la ruta de preparación y de su historia térmica. Las propiedades físicas también varían de acuerdo a estos parámetros. Es por esto que el objetivo común de numerosas publicaciones fue correlacionar los detalles de las rutas de síntesis, la estructura y microestruc-tura con las propiedades magnéticas y de transporte de car-gas observadas. El uso de Ni(MnO4)2xH2O como precursor es interesante debido a que el manganeso en este compuesto tiene un número de oxidación de +7. En la ruta de síntesis cerámica tradicional, se usa el precursor óxido Mn2O3, en el cual el Mn tiene un número de oxidación de +3, lo cual corres-ponde al número de oxidación promedio del Mn en NiMn2O4. En este trabajo se demuestra que las rutas de síntesis de precursores, combustión y coprecipitación de hidróxidos permiten fabricar la espinela NiMn2O4 con propiedades físicas típicas. En lo que respecta a la posible no estequiometría, la literatura es muy abundante. Se han reportado compuestos estequiométricos (δ=0) así como variaciones no estequio-métricas: principalmente vacancias catiónicas (NixMn2-xO4+δ), donde δ depende de x y de las condiciones de sínte-sis. También existen reportes de vacancias de oxígeno. En este trabajo, se presenta la estequiometría y la estructura cristalina correcta del NiMn2O4, producido por distintas rutas de síntesis. Además, se determinaron las propiedades físicas del material obtenido, por medio de medidas de la magne-tización en función de la temperatura y de las propiedades eléctricas.