Analysis of apoptosis and DNA damage in bovine cumulus cells after exposure in vitro to different zinc concentrations

The purpose of this study was to investigate the effect of Zn (zinc) concentration on CCs (cumulus cells) during in vitro maturation. For this purpose, DNA integrity of CCs by addition of different Zn concentrations [0 (control); 0.7 μg/ml (Zn1); 1.1 μg/ml (Zn2) and 1.5 μg/ml (Zn3)] to the culture m...

Descripción completa

Detalles Bibliográficos
Autores principales: Anchordoquy, Juan Mateo, Picco, Sebastián Julio, Seoane, Analía Isabel, Anchordoquy, Juan Patricio, Ponzinibbio, María Virginia, Mattioli, Guillermo Alberto, Peral García, Pilar, Furnus, Cecilia Cristina
Formato: Articulo Preprint
Lenguaje:Inglés
Publicado: 2011
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/98333
https://ri.conicet.gov.ar/11336/93853
https://onlinelibrary.wiley.com/doi/abs/10.1042/CBI20100507
Aporte de:SEDICI (UNLP) de Universidad Nacional de La Plata Ver origen
Descripción
Sumario:The purpose of this study was to investigate the effect of Zn (zinc) concentration on CCs (cumulus cells) during in vitro maturation. For this purpose, DNA integrity of CCs by addition of different Zn concentrations [0 (control); 0.7 μg/ml (Zn1); 1.1 μg/ml (Zn2) and 1.5 μg/ml (Zn3)] to the culture medium was evaluated by comet assay. In addition, early apoptosis was analysed by annexin staining assay. CCs treated with Zn showed a significant decrease in the DNA damage in a dosedependent manner. Comet assay analysed for TM (tail moment) was significantly higher in cells cultured without Zn (control, P<0.01) with respect to cells treated with Zn (control: 5.24±16.05; Zn1: 1.13±5.31; Zn2: 0.10±0.36; Zn3: 0.017±0.06). All treatments were statistically different from the control (P50.014 for Zn1; P,0.01 for Zn2 and Zn3). The frequency of apoptotic cells was higher in the control group (control: 0.142±0.07; Zn1: 0.109±0.0328; Zn2:0.102±0.013; Zn3: 0.0577±0.019). Statistical differences were found between control and Zn1 (P=0.0308), control and Zn2 (P=0.0077), control and Zn3 (P<0.0001), Zn1 and Zn3 (P<0.001) and Zn2 and Zn3 (P=0.0004). No differences were found between Zn1 and Zn2. In conclusion, low Zn concentrations increase DNA damage and apoptosis in CCs cultured in vitro. However, adequate Zn concentrations 'protect' the integrity of DNA molecule and diminish the percentage of apoptotic CC.