Local temperatures and local terms in modular Hamiltonians

We show there are analogs to the Unruh temperature that can be defined for any quantum field theory and region of the space. These local temperatures are defined using relative entropy with localized excitations. We show that important restrictions arise from relative entropy inequalities and causal...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Arias, Raúl Eduardo, Blanco, David Daniel, Casini, Horacio Germán, Huerta, Marina
Formato: Articulo Preprint
Lenguaje:Inglés
Publicado: 2017
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/97179
https://ri.conicet.gov.ar/11336/63982
http://journals.aps.org/prd/abstract/10.1103/PhysRevD.95.065005
https://arxiv.org/abs/1611.08517
Aporte de:
id I19-R120-10915-97179
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Física
Relative entropy
Unruh temperature
spellingShingle Física
Relative entropy
Unruh temperature
Arias, Raúl Eduardo
Blanco, David Daniel
Casini, Horacio Germán
Huerta, Marina
Local temperatures and local terms in modular Hamiltonians
topic_facet Física
Relative entropy
Unruh temperature
description We show there are analogs to the Unruh temperature that can be defined for any quantum field theory and region of the space. These local temperatures are defined using relative entropy with localized excitations. We show that important restrictions arise from relative entropy inequalities and causal propagation between Cauchy surfaces. These suggest a large amount of universality for local temperatures, especially the ones affecting null directions. For regions with any number of intervals in two spacetime dimensions, the local temperatures might arise from a term in the modular Hamiltonian proportional to the stress tensor. We argue this term might be universal, with a coefficient that is the same for any theory, and check analytically and numerically that this is the case for free massive scalar and Dirac fields. In dimensions d≥3, the local terms in the modular Hamiltonian producing these local temperatures cannot be formed exclusively from the stress tensor. For a free scalar field, we classify the structure of the local terms.
format Articulo
Preprint
author Arias, Raúl Eduardo
Blanco, David Daniel
Casini, Horacio Germán
Huerta, Marina
author_facet Arias, Raúl Eduardo
Blanco, David Daniel
Casini, Horacio Germán
Huerta, Marina
author_sort Arias, Raúl Eduardo
title Local temperatures and local terms in modular Hamiltonians
title_short Local temperatures and local terms in modular Hamiltonians
title_full Local temperatures and local terms in modular Hamiltonians
title_fullStr Local temperatures and local terms in modular Hamiltonians
title_full_unstemmed Local temperatures and local terms in modular Hamiltonians
title_sort local temperatures and local terms in modular hamiltonians
publishDate 2017
url http://sedici.unlp.edu.ar/handle/10915/97179
https://ri.conicet.gov.ar/11336/63982
http://journals.aps.org/prd/abstract/10.1103/PhysRevD.95.065005
https://arxiv.org/abs/1611.08517
work_keys_str_mv AT ariasrauleduardo localtemperaturesandlocaltermsinmodularhamiltonians
AT blancodaviddaniel localtemperaturesandlocaltermsinmodularhamiltonians
AT casinihoraciogerman localtemperaturesandlocaltermsinmodularhamiltonians
AT huertamarina localtemperaturesandlocaltermsinmodularhamiltonians
bdutipo_str Repositorios
_version_ 1764820492433227776