Comparing marker definition algorithms for watershed segmentation in microscopy images

Segmentation is often a critical step in image analysis. Microscope image components show great variability of shapes, sizes, intensities and textures. An inaccurate segmentation conditions the ulterior quantification and parameter measurement. The Watershed Transform is able to distinguish extrem...

Descripción completa

Detalles Bibliográficos
Autores principales: González, Mariela A., Cuadrado, Teresita R., Ballarín, Virginia Laura
Formato: Articulo
Lenguaje:Inglés
Publicado: 2008
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/9639
http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Oct08-4.pdf
Aporte de:SEDICI (UNLP) de Universidad Nacional de La Plata Ver origen
id I19-R120-10915-9639
record_format dspace
spelling I19-R120-10915-96392019-06-21T04:03:31Z http://sedici.unlp.edu.ar/handle/10915/9639 http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Oct08-4.pdf issn:1666-6038 Comparing marker definition algorithms for watershed segmentation in microscopy images González, Mariela A. Cuadrado, Teresita R. Ballarín, Virginia Laura 2008-10 2009-04-13T03:00:00Z en Ciencias Informáticas Clustering Segmentation Image processing software Segmentation is often a critical step in image analysis. Microscope image components show great variability of shapes, sizes, intensities and textures. An inaccurate segmentation conditions the ulterior quantification and parameter measurement. The Watershed Transform is able to distinguish extremely complex objects and is easily adaptable to various kinds of images. The success of the Watershed Transform depends essentially on the existence of unequivocal markers for each of the objects of interest. The standard methods of marker detection are highly specific, they have a high computational cost and they determine markers in an effective but not automatic way when processing highly textured images. This paper compares two different pattern recognition techniques proposed for the automatic detection of markers that allow the application of the Watershed Transform to biomedical images acquired via a microscope. The results allow us to conclude that the method based on clustering is an effective tool for the application of the Watershed Transform. Facultad de Informática Articulo Articulo http://creativecommons.org/licenses/by-nc/3.0/ Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0) application/pdf 151-157
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Ciencias Informáticas
Clustering
Segmentation
Image processing software
spellingShingle Ciencias Informáticas
Clustering
Segmentation
Image processing software
González, Mariela A.
Cuadrado, Teresita R.
Ballarín, Virginia Laura
Comparing marker definition algorithms for watershed segmentation in microscopy images
topic_facet Ciencias Informáticas
Clustering
Segmentation
Image processing software
description Segmentation is often a critical step in image analysis. Microscope image components show great variability of shapes, sizes, intensities and textures. An inaccurate segmentation conditions the ulterior quantification and parameter measurement. The Watershed Transform is able to distinguish extremely complex objects and is easily adaptable to various kinds of images. The success of the Watershed Transform depends essentially on the existence of unequivocal markers for each of the objects of interest. The standard methods of marker detection are highly specific, they have a high computational cost and they determine markers in an effective but not automatic way when processing highly textured images. This paper compares two different pattern recognition techniques proposed for the automatic detection of markers that allow the application of the Watershed Transform to biomedical images acquired via a microscope. The results allow us to conclude that the method based on clustering is an effective tool for the application of the Watershed Transform.
format Articulo
Articulo
author González, Mariela A.
Cuadrado, Teresita R.
Ballarín, Virginia Laura
author_facet González, Mariela A.
Cuadrado, Teresita R.
Ballarín, Virginia Laura
author_sort González, Mariela A.
title Comparing marker definition algorithms for watershed segmentation in microscopy images
title_short Comparing marker definition algorithms for watershed segmentation in microscopy images
title_full Comparing marker definition algorithms for watershed segmentation in microscopy images
title_fullStr Comparing marker definition algorithms for watershed segmentation in microscopy images
title_full_unstemmed Comparing marker definition algorithms for watershed segmentation in microscopy images
title_sort comparing marker definition algorithms for watershed segmentation in microscopy images
publishDate 2008
url http://sedici.unlp.edu.ar/handle/10915/9639
http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Oct08-4.pdf
work_keys_str_mv AT gonzalezmarielaa comparingmarkerdefinitionalgorithmsforwatershedsegmentationinmicroscopyimages
AT cuadradoteresitar comparingmarkerdefinitionalgorithmsforwatershedsegmentationinmicroscopyimages
AT ballarinvirginialaura comparingmarkerdefinitionalgorithmsforwatershedsegmentationinmicroscopyimages
_version_ 1734114919403487232