Noncommutativity in (2+1)-dimensions and the Lorentz group

In this article we considered models of particles living in a three-dimensional space-time with a nonstandard noncommutativity induced by shifting canonical coordinates and momenta with generators of a unitary irreducible representation of the Lorentz group. The Hilbert space gets the structure of a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Falomir, Horacio Alberto, Vega, Federico Gaspar, Gamboa, Jorge, Mendez, Fernando, Loewe, Marcelo
Formato: Articulo Preprint
Lenguaje:Inglés
Publicado: 2012
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/96121
https://ri.conicet.gov.ar/11336/74566
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.86.105035
Aporte de:
id I19-R120-10915-96121
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Física
Ciencias Exactas
Noncommutative space
Lorentz group
Quantum mechanics model
Landau problem
spellingShingle Física
Ciencias Exactas
Noncommutative space
Lorentz group
Quantum mechanics model
Landau problem
Falomir, Horacio Alberto
Vega, Federico Gaspar
Gamboa, Jorge
Mendez, Fernando
Loewe, Marcelo
Noncommutativity in (2+1)-dimensions and the Lorentz group
topic_facet Física
Ciencias Exactas
Noncommutative space
Lorentz group
Quantum mechanics model
Landau problem
description In this article we considered models of particles living in a three-dimensional space-time with a nonstandard noncommutativity induced by shifting canonical coordinates and momenta with generators of a unitary irreducible representation of the Lorentz group. The Hilbert space gets the structure of a direct product with the representation space, where we are able to construct operators which realize the algebra of Lorentz transformations. We study the modified Landau problem for both Schrödinger and Dirac particles, whose Hamiltonians are obtained through a kind of non-Abelian Bopp's shift of the dynamical variables from the ones of the usual problem in the normal space. The spectrum of these models are considered in perturbation theory, both for small and large noncommutativity parameters. We find no constraint between the parameters referring to noncommutativity in coordinates and momenta but they rather play similar roles. Since the representation space of the unitary irreducible representations SL(2,R) can be realized in terms of spaces of square-integrable functions, we conclude that these models are equivalent to quantum mechanical models of particles living in a space with an additional compact dimension.
format Articulo
Preprint
author Falomir, Horacio Alberto
Vega, Federico Gaspar
Gamboa, Jorge
Mendez, Fernando
Loewe, Marcelo
author_facet Falomir, Horacio Alberto
Vega, Federico Gaspar
Gamboa, Jorge
Mendez, Fernando
Loewe, Marcelo
author_sort Falomir, Horacio Alberto
title Noncommutativity in (2+1)-dimensions and the Lorentz group
title_short Noncommutativity in (2+1)-dimensions and the Lorentz group
title_full Noncommutativity in (2+1)-dimensions and the Lorentz group
title_fullStr Noncommutativity in (2+1)-dimensions and the Lorentz group
title_full_unstemmed Noncommutativity in (2+1)-dimensions and the Lorentz group
title_sort noncommutativity in (2+1)-dimensions and the lorentz group
publishDate 2012
url http://sedici.unlp.edu.ar/handle/10915/96121
https://ri.conicet.gov.ar/11336/74566
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.86.105035
work_keys_str_mv AT falomirhoracioalberto noncommutativityin21dimensionsandthelorentzgroup
AT vegafedericogaspar noncommutativityin21dimensionsandthelorentzgroup
AT gamboajorge noncommutativityin21dimensionsandthelorentzgroup
AT mendezfernando noncommutativityin21dimensionsandthelorentzgroup
AT loewemarcelo noncommutativityin21dimensionsandthelorentzgroup
bdutipo_str Repositorios
_version_ 1764820491792547842