Evolutionary computation with simulated annealing: conditions for optimal equilibrium distribution

In this paper a thermodynamic approach is presented to the problem of convergence of evolutionary algorithms. The case of the Simulated Annealing algorithm for optimisation is considered as a simple evolution strategy with a control parameter allowing balance between the probability of obtaining an...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Segura, Enrique Carlos
Formato: Articulo
Lenguaje:Inglés
Publicado: 2005
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/9590
Aporte de:
id I19-R120-10915-9590
record_format dspace
spelling I19-R120-10915-95902024-05-14T17:44:28Z http://sedici.unlp.edu.ar/handle/10915/9590 Evolutionary computation with simulated annealing: conditions for optimal equilibrium distribution Segura, Enrique Carlos 2005-12 2008-05-23T03:00:00Z en Ciencias Informáticas evolutionary computation simulated annealing thermodynamics of equilibrium detailed balance ergodicity In this paper a thermodynamic approach is presented to the problem of convergence of evolutionary algorithms. The case of the Simulated Annealing algorithm for optimisation is considered as a simple evolution strategy with a control parameter allowing balance between the probability of obtaining an optimal or near-optimal solution and the time that the algorithm will take to reach equilibrium. This capacity is analysed and a theoretical frame is presented, stating a general condition to be fulfilled by an evolutionary algorithm in order to ensure its convergence to a global maximum of the fitness function. Facultad de Informática Articulo Articulo http://creativecommons.org/licenses/by-nc/3.0/ Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0) application/pdf 178-182
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Ciencias Informáticas
evolutionary computation
simulated annealing
thermodynamics of equilibrium
detailed balance
ergodicity
spellingShingle Ciencias Informáticas
evolutionary computation
simulated annealing
thermodynamics of equilibrium
detailed balance
ergodicity
Segura, Enrique Carlos
Evolutionary computation with simulated annealing: conditions for optimal equilibrium distribution
topic_facet Ciencias Informáticas
evolutionary computation
simulated annealing
thermodynamics of equilibrium
detailed balance
ergodicity
description In this paper a thermodynamic approach is presented to the problem of convergence of evolutionary algorithms. The case of the Simulated Annealing algorithm for optimisation is considered as a simple evolution strategy with a control parameter allowing balance between the probability of obtaining an optimal or near-optimal solution and the time that the algorithm will take to reach equilibrium. This capacity is analysed and a theoretical frame is presented, stating a general condition to be fulfilled by an evolutionary algorithm in order to ensure its convergence to a global maximum of the fitness function.
format Articulo
Articulo
author Segura, Enrique Carlos
author_facet Segura, Enrique Carlos
author_sort Segura, Enrique Carlos
title Evolutionary computation with simulated annealing: conditions for optimal equilibrium distribution
title_short Evolutionary computation with simulated annealing: conditions for optimal equilibrium distribution
title_full Evolutionary computation with simulated annealing: conditions for optimal equilibrium distribution
title_fullStr Evolutionary computation with simulated annealing: conditions for optimal equilibrium distribution
title_full_unstemmed Evolutionary computation with simulated annealing: conditions for optimal equilibrium distribution
title_sort evolutionary computation with simulated annealing: conditions for optimal equilibrium distribution
publishDate 2005
url http://sedici.unlp.edu.ar/handle/10915/9590
work_keys_str_mv AT seguraenriquecarlos evolutionarycomputationwithsimulatedannealingconditionsforoptimalequilibriumdistribution
_version_ 1807220260474978304