Improving the O-GEHL branch prediction accuracy using analytical results

The O-GEHL branch predictor has outperformed other prediction schemes using the same set of benchmarks in an international branch prediction contest, CBP-1. In this paper, we present the analysis results on each of the OGEHL branch predictor tables and also on the optimal number of predictor tables....

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Tiamkaew, Ekkasit, Kongmunvattana, Angkul
Formato: Articulo
Lenguaje:Inglés
Publicado: 2007
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/9550
http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Apr07-7.pdf
Aporte de:
id I19-R120-10915-9550
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Ciencias Informáticas
Neural nets
branch predictor
perceptron
predictor analysis
spellingShingle Ciencias Informáticas
Neural nets
branch predictor
perceptron
predictor analysis
Tiamkaew, Ekkasit
Kongmunvattana, Angkul
Improving the O-GEHL branch prediction accuracy using analytical results
topic_facet Ciencias Informáticas
Neural nets
branch predictor
perceptron
predictor analysis
description The O-GEHL branch predictor has outperformed other prediction schemes using the same set of benchmarks in an international branch prediction contest, CBP-1. In this paper, we present the analysis results on each of the OGEHL branch predictor tables and also on the optimal number of predictor tables. Two methods are subsequently proposed to help increase the O-GEHL prediction accuracy. The first one aims to increase the space utilization of the first predictor table by dynamically adjusting the lengths of branch history regarding to the type of a benchmark currently in execution. The second one adds an extra table into the O-GEHL predictor using the space saved from the sharing of hysteresis bits. Experimental results have confirmed that both schemes improve the accuracy of two different predictor configurations, leading to two promising research directions for future explorations.
format Articulo
Articulo
author Tiamkaew, Ekkasit
Kongmunvattana, Angkul
author_facet Tiamkaew, Ekkasit
Kongmunvattana, Angkul
author_sort Tiamkaew, Ekkasit
title Improving the O-GEHL branch prediction accuracy using analytical results
title_short Improving the O-GEHL branch prediction accuracy using analytical results
title_full Improving the O-GEHL branch prediction accuracy using analytical results
title_fullStr Improving the O-GEHL branch prediction accuracy using analytical results
title_full_unstemmed Improving the O-GEHL branch prediction accuracy using analytical results
title_sort improving the o-gehl branch prediction accuracy using analytical results
publishDate 2007
url http://sedici.unlp.edu.ar/handle/10915/9550
http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Apr07-7.pdf
work_keys_str_mv AT tiamkaewekkasit improvingtheogehlbranchpredictionaccuracyusinganalyticalresults
AT kongmunvattanaangkul improvingtheogehlbranchpredictionaccuracyusinganalyticalresults
bdutipo_str Repositorios
_version_ 1764820492044206080