Radiation Damage Mechanisms of Monolayer-Protected Nanoparticles via TEM Analysis

In this work, it is shown that thiol-protected Au nanoparticles (AuNPs@SR) of approximately 3.4 nm size suffered unexpectedly high radiation damage under standard transmission electron microscopy (TEM) operating conditions. For metallic systems (conducting sample), it is expected that the greatest c...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Azcárate, Julio César, Fonticelli, Mariano Hernán, Zelaya, María Eugenia
Formato: Articulo Preprint
Lenguaje:Inglés
Publicado: 2017
Materias:
TEM
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/95491
https://ri.conicet.gov.ar/11336/70478
Aporte de:
id I19-R120-10915-95491
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Física
Ciencias Exactas
Nanoparticles
Radiation damage
TEM
spellingShingle Física
Ciencias Exactas
Nanoparticles
Radiation damage
TEM
Azcárate, Julio César
Fonticelli, Mariano Hernán
Zelaya, María Eugenia
Radiation Damage Mechanisms of Monolayer-Protected Nanoparticles via TEM Analysis
topic_facet Física
Ciencias Exactas
Nanoparticles
Radiation damage
TEM
description In this work, it is shown that thiol-protected Au nanoparticles (AuNPs@SR) of approximately 3.4 nm size suffered unexpectedly high radiation damage under standard transmission electron microscopy (TEM) operating conditions. For metallic systems (conducting sample), it is expected that the greatest contribution to the damage comes from knock-on displacement, but radiolysis is the most probable radiation damage mechanism for organic samples. The radiation damage of the electron beam produces huge changes in AuNPs' structure, leading to coalescence of the Au cores when their {100} surfaces are facing each other. The complete coalescence process involve thiol desoprtion, AuNPs' reorientation, and surface diffusion of Au adatoms, which produce the oriented attachment of the Au cores. The knock-on displacement cannot explain by itself the time taken by the entire process. Through a rigorous analysis, we rationalize the results considering that because of the small size of AuNPs they have a lower electron density than the bulk material which favors radiolytic damage.
format Articulo
Preprint
author Azcárate, Julio César
Fonticelli, Mariano Hernán
Zelaya, María Eugenia
author_facet Azcárate, Julio César
Fonticelli, Mariano Hernán
Zelaya, María Eugenia
author_sort Azcárate, Julio César
title Radiation Damage Mechanisms of Monolayer-Protected Nanoparticles via TEM Analysis
title_short Radiation Damage Mechanisms of Monolayer-Protected Nanoparticles via TEM Analysis
title_full Radiation Damage Mechanisms of Monolayer-Protected Nanoparticles via TEM Analysis
title_fullStr Radiation Damage Mechanisms of Monolayer-Protected Nanoparticles via TEM Analysis
title_full_unstemmed Radiation Damage Mechanisms of Monolayer-Protected Nanoparticles via TEM Analysis
title_sort radiation damage mechanisms of monolayer-protected nanoparticles via tem analysis
publishDate 2017
url http://sedici.unlp.edu.ar/handle/10915/95491
https://ri.conicet.gov.ar/11336/70478
work_keys_str_mv AT azcaratejuliocesar radiationdamagemechanismsofmonolayerprotectednanoparticlesviatemanalysis
AT fonticellimarianohernan radiationdamagemechanismsofmonolayerprotectednanoparticlesviatemanalysis
AT zelayamariaeugenia radiationdamagemechanismsofmonolayerprotectednanoparticlesviatemanalysis
bdutipo_str Repositorios
_version_ 1764820492033720322