Center selection techniques for metric indexes

The metric spaces model formalizes the similarity search concept in nontraditional databases. The goal is to build an index designed to save distance computations when answering similarity queries later. A large class of algorithms to build the index are based on partitioning the space in zones as c...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mendoza Alric, Cristian, Herrera, Norma Edith
Formato: Articulo
Lenguaje:Inglés
Publicado: 2007
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/9535
http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Mar07-16.pdf
Aporte de:
id I19-R120-10915-9535
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Ciencias Informáticas
Indexing methods
Base de Datos
centers selection
metric spaces
similarity search
spellingShingle Ciencias Informáticas
Indexing methods
Base de Datos
centers selection
metric spaces
similarity search
Mendoza Alric, Cristian
Herrera, Norma Edith
Center selection techniques for metric indexes
topic_facet Ciencias Informáticas
Indexing methods
Base de Datos
centers selection
metric spaces
similarity search
description The metric spaces model formalizes the similarity search concept in nontraditional databases. The goal is to build an index designed to save distance computations when answering similarity queries later. A large class of algorithms to build the index are based on partitioning the space in zones as compact as possible. Each zone stores a representative point, called center, and a few extra data that allow to discard the entire zone at query time without measuring the actual distance between the elements of the zone and the query object. The way in which the centers are selected affects the performance of the algorithm. In this paper, we introduce two new center selection techniques for compact partition based indexes. These techniques were evaluated using the Geometric Near-neighbor Access Tree (GNAT). We experimentally showed that they achieve good performance.
format Articulo
Articulo
author Mendoza Alric, Cristian
Herrera, Norma Edith
author_facet Mendoza Alric, Cristian
Herrera, Norma Edith
author_sort Mendoza Alric, Cristian
title Center selection techniques for metric indexes
title_short Center selection techniques for metric indexes
title_full Center selection techniques for metric indexes
title_fullStr Center selection techniques for metric indexes
title_full_unstemmed Center selection techniques for metric indexes
title_sort center selection techniques for metric indexes
publishDate 2007
url http://sedici.unlp.edu.ar/handle/10915/9535
http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Mar07-16.pdf
work_keys_str_mv AT mendozaalriccristian centerselectiontechniquesformetricindexes
AT herreranormaedith centerselectiontechniquesformetricindexes
bdutipo_str Repositorios
_version_ 1764820491766333440