Center selection techniques for metric indexes
The metric spaces model formalizes the similarity search concept in nontraditional databases. The goal is to build an index designed to save distance computations when answering similarity queries later. A large class of algorithms to build the index are based on partitioning the space in zones as c...
Guardado en:
Autores principales: | , |
---|---|
Formato: | Articulo |
Lenguaje: | Inglés |
Publicado: |
2007
|
Materias: | |
Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/9535 http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Mar07-16.pdf |
Aporte de: |
id |
I19-R120-10915-9535 |
---|---|
record_format |
dspace |
institution |
Universidad Nacional de La Plata |
institution_str |
I-19 |
repository_str |
R-120 |
collection |
SEDICI (UNLP) |
language |
Inglés |
topic |
Ciencias Informáticas Indexing methods Base de Datos centers selection metric spaces similarity search |
spellingShingle |
Ciencias Informáticas Indexing methods Base de Datos centers selection metric spaces similarity search Mendoza Alric, Cristian Herrera, Norma Edith Center selection techniques for metric indexes |
topic_facet |
Ciencias Informáticas Indexing methods Base de Datos centers selection metric spaces similarity search |
description |
The metric spaces model formalizes the similarity search concept in nontraditional databases. The goal is to build an index designed to save distance computations when answering similarity queries later. A large class of algorithms to build the index are based on partitioning the space in zones as compact as possible. Each zone stores a representative point, called center, and a few extra data that allow to discard the entire zone at query time without measuring the actual distance between the elements of the zone and the query object. The way in which the centers are selected affects the performance of the algorithm. In this paper, we introduce two new center selection techniques for compact partition based indexes. These techniques were evaluated using the Geometric Near-neighbor Access Tree (GNAT). We experimentally showed that they achieve good performance. |
format |
Articulo Articulo |
author |
Mendoza Alric, Cristian Herrera, Norma Edith |
author_facet |
Mendoza Alric, Cristian Herrera, Norma Edith |
author_sort |
Mendoza Alric, Cristian |
title |
Center selection techniques for metric indexes |
title_short |
Center selection techniques for metric indexes |
title_full |
Center selection techniques for metric indexes |
title_fullStr |
Center selection techniques for metric indexes |
title_full_unstemmed |
Center selection techniques for metric indexes |
title_sort |
center selection techniques for metric indexes |
publishDate |
2007 |
url |
http://sedici.unlp.edu.ar/handle/10915/9535 http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Mar07-16.pdf |
work_keys_str_mv |
AT mendozaalriccristian centerselectiontechniquesformetricindexes AT herreranormaedith centerselectiontechniquesformetricindexes |
bdutipo_str |
Repositorios |
_version_ |
1764820491766333440 |