Comment on "Quantum Kaniadakis entropy under projective measurement"

We comment on the main result given by Ourabah et al. [Phys. Rev. E 92, 032114 (2015)PLEEE81539-375510.1103/PhysRevE.92.032114], noting that it can be derived as a special case of the more general study that we have provided in [Quantum Inf Process 15, 3393 (2016)10.1007/s11128-016-1329-5]. Our proo...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Bosyk, Gustavo Martín, Zozor, Steeve, Holik, Federico Hernán, Portesi, Mariela Adelina, Lamberti, Pedro Walter
Formato: Articulo
Lenguaje:Inglés
Publicado: 2016
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/95344
https://ri.conicet.gov.ar/11336/70690
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.94.026103
Aporte de:
id I19-R120-10915-95344
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Física
Ciencias Exactas
Generalized entropies
Schur-concavity
Majorization
spellingShingle Física
Ciencias Exactas
Generalized entropies
Schur-concavity
Majorization
Bosyk, Gustavo Martín
Zozor, Steeve
Holik, Federico Hernán
Portesi, Mariela Adelina
Lamberti, Pedro Walter
Comment on "Quantum Kaniadakis entropy under projective measurement"
topic_facet Física
Ciencias Exactas
Generalized entropies
Schur-concavity
Majorization
description We comment on the main result given by Ourabah et al. [Phys. Rev. E 92, 032114 (2015)PLEEE81539-375510.1103/PhysRevE.92.032114], noting that it can be derived as a special case of the more general study that we have provided in [Quantum Inf Process 15, 3393 (2016)10.1007/s11128-016-1329-5]. Our proof of the nondecreasing character under projective measurements of so-called generalized (h,φ) entropies (that comprise the Kaniadakis family as a particular case) has been based on majorization and Schur-concavity arguments. As a consequence, we have obtained that this property is obviously satisfied by Kaniadakis entropy but at the same time is fulfilled by all entropies preserving majorization. In addition, we have seen that our result holds for any bistochastic map, being a projective measurement a particular case. We argue here that looking at these facts from the point of view given in [Quantum Inf Process 15, 3393 (2016)10.1007/s11128-016-1329-5] not only simplifies the demonstrations but allows for a deeper understanding of the entropic properties involved.
format Articulo
Articulo
author Bosyk, Gustavo Martín
Zozor, Steeve
Holik, Federico Hernán
Portesi, Mariela Adelina
Lamberti, Pedro Walter
author_facet Bosyk, Gustavo Martín
Zozor, Steeve
Holik, Federico Hernán
Portesi, Mariela Adelina
Lamberti, Pedro Walter
author_sort Bosyk, Gustavo Martín
title Comment on "Quantum Kaniadakis entropy under projective measurement"
title_short Comment on "Quantum Kaniadakis entropy under projective measurement"
title_full Comment on "Quantum Kaniadakis entropy under projective measurement"
title_fullStr Comment on "Quantum Kaniadakis entropy under projective measurement"
title_full_unstemmed Comment on "Quantum Kaniadakis entropy under projective measurement"
title_sort comment on "quantum kaniadakis entropy under projective measurement"
publishDate 2016
url http://sedici.unlp.edu.ar/handle/10915/95344
https://ri.conicet.gov.ar/11336/70690
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.94.026103
work_keys_str_mv AT bosykgustavomartin commentonquantumkaniadakisentropyunderprojectivemeasurement
AT zozorsteeve commentonquantumkaniadakisentropyunderprojectivemeasurement
AT holikfedericohernan commentonquantumkaniadakisentropyunderprojectivemeasurement
AT portesimarielaadelina commentonquantumkaniadakisentropyunderprojectivemeasurement
AT lambertipedrowalter commentonquantumkaniadakisentropyunderprojectivemeasurement
bdutipo_str Repositorios
_version_ 1764820491761090564