Boosting classifiers for weed seeds identification
The identification and classification of seeds are of major technical and economical importance in the agricultural industry. To automate these activities, like in ocular inspection one should consider seed size, shape, color and texture, which can be obtained from seed images. In this work we compl...
Guardado en:
| Autores principales: | Granitto, Pablo Miguel, Garralda, Pablo A., Verdes, Pablo Fabián, Ceccatto, Hermenegildo Alejandro |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Inglés |
| Publicado: |
2003
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/9455 http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Apr03-6.pdf |
| Aporte de: |
Ejemplares similares
-
Boosting classifiers for weed seeds identification
por: Granitto, Pablo Miguel, et al.
Publicado: (2002) -
Automatic identification of weed seeds by color image processing
por: Granitto, Pablo Miguel, et al.
Publicado: (2000) -
Aggregation algorithms for regression : A comparison with boosting and SVM techniques
por: Granitto, Pablo Miguel, et al.
Publicado: (2003) -
SECA: a stepwise algorithm for construction of neural networks ensembles
por: Granitto, Pablo Miguel, et al.
Publicado: (2001) -
Automatic Grading of Green Intensity in Soybean Seeds
por: Namías, Rafael, et al.
Publicado: (2012)