Boosting classifiers for weed seeds identification
The identification and classification of seeds are of major technical and economical importance in the agricultural industry. To automate these activities, like in ocular inspection one should consider seed size, shape, color and texture, which can be obtained from seed images. In this work we compl...
Autores principales: | , , , |
---|---|
Formato: | Articulo |
Lenguaje: | Inglés |
Publicado: |
2003
|
Materias: | |
Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/9455 http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Apr03-6.pdf |
Aporte de: |
id |
I19-R120-10915-9455 |
---|---|
record_format |
dspace |
institution |
Universidad Nacional de La Plata |
institution_str |
I-19 |
repository_str |
R-120 |
collection |
SEDICI (UNLP) |
language |
Inglés |
topic |
Ciencias Informáticas boosting Redes Neurales (Computación) machine vision |
spellingShingle |
Ciencias Informáticas boosting Redes Neurales (Computación) machine vision Granitto, Pablo Miguel Garralda, Pablo A. Verdes, Pablo Fabián Ceccatto, Hermenegildo Alejandro Boosting classifiers for weed seeds identification |
topic_facet |
Ciencias Informáticas boosting Redes Neurales (Computación) machine vision |
description |
The identification and classification of seeds are of major technical and economical importance in the agricultural industry. To automate these activities, like in ocular inspection one should consider seed size, shape, color and texture, which can be obtained from seed images. In this work we complement previous studies on the discriminating power of these characteristics for the unique identification of seeds of 57 weed species. In particular, we discuss the possibility of improving the naïve Bayes and artificial neural network classifiers previously developed in order to avoid the use of color features as classification parameters.
Morphological and textural seed characteristics can be obtained from black and white images, which are easier to process and require a cheaper hardware than color ones. To this end, we boost the classification methods by means of the AdaBoost.M1 technique, and compare the results obtained with the performance achieved when using color images. We conclude that boosting the naïve Bayes and neural classifiers does not fully compensate the discriminating power of color features. However, the improvement in classification accuracy might be enough to make the classifier still acceptable in practical applications. |
format |
Articulo Articulo |
author |
Granitto, Pablo Miguel Garralda, Pablo A. Verdes, Pablo Fabián Ceccatto, Hermenegildo Alejandro |
author_facet |
Granitto, Pablo Miguel Garralda, Pablo A. Verdes, Pablo Fabián Ceccatto, Hermenegildo Alejandro |
author_sort |
Granitto, Pablo Miguel |
title |
Boosting classifiers for weed seeds identification |
title_short |
Boosting classifiers for weed seeds identification |
title_full |
Boosting classifiers for weed seeds identification |
title_fullStr |
Boosting classifiers for weed seeds identification |
title_full_unstemmed |
Boosting classifiers for weed seeds identification |
title_sort |
boosting classifiers for weed seeds identification |
publishDate |
2003 |
url |
http://sedici.unlp.edu.ar/handle/10915/9455 http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Apr03-6.pdf |
work_keys_str_mv |
AT granittopablomiguel boostingclassifiersforweedseedsidentification AT garraldapabloa boostingclassifiersforweedseedsidentification AT verdespablofabian boostingclassifiersforweedseedsidentification AT ceccattohermenegildoalejandro boostingclassifiersforweedseedsidentification |
bdutipo_str |
Repositorios |
_version_ |
1764820491549278210 |