CNN-LSTM Architecture for Action Recognition in Videos
Action recognition in videos is currently a topic of interest in the area of computer vision, due to potential applications such as: multimedia indexing, surveillance in public spaces, among others. In this paper we propose a CNN{LSTM architecture. First, a pre-trained VGG16 convolutional neuronal n...
Guardado en:
| Autores principales: | Orozco, Carlos Ismael, Buemi, María E., Berlles, Julio Jacobo |
|---|---|
| Formato: | Objeto de conferencia |
| Lenguaje: | Inglés |
| Publicado: |
2019
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/89144 |
| Aporte de: |
Ejemplares similares
-
A Study of Convolutional Architectures for Handshape Recognition applied to Sign
Language
por: Quiroga, Facundo, et al.
Publicado: (2017) -
LSTM recurrent neural network for energy demand forecasting
por: Alarcón, Rodrigo Germán, et al.
Publicado: (2024) -
BiLSTM with CNN Features For HAR in Videos
por: Orozco, Carlos Ismael, et al.
Publicado: (2021) -
A study on Pedestrian detection using a deep convolutional neural network
por: Orozco, I., et al. -
A study on Pedestrian detection using a deep convolutional neural network
por: Buemi, María Elena
Publicado: (2016)