CNN-LSTM Architecture for Action Recognition in Videos
Action recognition in videos is currently a topic of interest in the area of computer vision, due to potential applications such as: multimedia indexing, surveillance in public spaces, among others. In this paper we propose a CNN{LSTM architecture. First, a pre-trained VGG16 convolutional neuronal n...
Guardado en:
| Autores principales: | , , |
|---|---|
| Formato: | Objeto de conferencia |
| Lenguaje: | Inglés |
| Publicado: |
2019
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/89144 |
| Aporte de: |
| id |
I19-R120-10915-89144 |
|---|---|
| record_format |
dspace |
| institution |
Universidad Nacional de La Plata |
| institution_str |
I-19 |
| repository_str |
R-120 |
| collection |
SEDICI (UNLP) |
| language |
Inglés |
| topic |
Ciencias Informáticas Action recognition Convolutional neural network Long short-term memory UCF-11 |
| spellingShingle |
Ciencias Informáticas Action recognition Convolutional neural network Long short-term memory UCF-11 Orozco, Carlos Ismael Buemi, María E. Berlles, Julio Jacobo CNN-LSTM Architecture for Action Recognition in Videos |
| topic_facet |
Ciencias Informáticas Action recognition Convolutional neural network Long short-term memory UCF-11 |
| description |
Action recognition in videos is currently a topic of interest in the area of computer vision, due to potential applications such as: multimedia indexing, surveillance in public spaces, among others. In this paper we propose a CNN{LSTM architecture. First, a pre-trained VGG16 convolutional neuronal networks extracts the features of the input video. Then, a LSTM classi es the video in a particular class.
To carry out the training and the test, we used the UCF-11 dataset.
Evaluate the performance of our system using the evaluation metric in accuracy. We apply LOOCV with k = 25, we obtain ~ 98% and ~ 91% for training and test respectively. |
| format |
Objeto de conferencia Objeto de conferencia |
| author |
Orozco, Carlos Ismael Buemi, María E. Berlles, Julio Jacobo |
| author_facet |
Orozco, Carlos Ismael Buemi, María E. Berlles, Julio Jacobo |
| author_sort |
Orozco, Carlos Ismael |
| title |
CNN-LSTM Architecture for Action Recognition in Videos |
| title_short |
CNN-LSTM Architecture for Action Recognition in Videos |
| title_full |
CNN-LSTM Architecture for Action Recognition in Videos |
| title_fullStr |
CNN-LSTM Architecture for Action Recognition in Videos |
| title_full_unstemmed |
CNN-LSTM Architecture for Action Recognition in Videos |
| title_sort |
cnn-lstm architecture for action recognition in videos |
| publishDate |
2019 |
| url |
http://sedici.unlp.edu.ar/handle/10915/89144 |
| work_keys_str_mv |
AT orozcocarlosismael cnnlstmarchitectureforactionrecognitioninvideos AT buemimariae cnnlstmarchitectureforactionrecognitioninvideos AT berllesjuliojacobo cnnlstmarchitectureforactionrecognitioninvideos |
| bdutipo_str |
Repositorios |
| _version_ |
1764820490187177986 |