Deep neural architectures for highly imbalanced data in bioinformatics

In this work, we present two new variants to the deepSOM model: the deep elastic SOM (deSOM) and the deep ensemble elastic SOM (deeSOM), which overcome the mentioned issues. In deSOM the number of deep levels not only grows automatically, but also the size of each layer is expanded adaptively accord...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Bugnon, Leandro A., Yones, Cristian, Milone, Diego H., Stegmayer, Georgina
Formato: Objeto de conferencia Resumen
Lenguaje:Inglés
Publicado: 2019
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/87801
Aporte de:
id I19-R120-10915-87801
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Ciencias Informáticas
Bioinformatics
Pre-miRNA classification
Deep neural architectures
High class imbalance
spellingShingle Ciencias Informáticas
Bioinformatics
Pre-miRNA classification
Deep neural architectures
High class imbalance
Bugnon, Leandro A.
Yones, Cristian
Milone, Diego H.
Stegmayer, Georgina
Deep neural architectures for highly imbalanced data in bioinformatics
topic_facet Ciencias Informáticas
Bioinformatics
Pre-miRNA classification
Deep neural architectures
High class imbalance
description In this work, we present two new variants to the deepSOM model: the deep elastic SOM (deSOM) and the deep ensemble elastic SOM (deeSOM), which overcome the mentioned issues. In deSOM the number of deep levels not only grows automatically, but also the size of each layer is expanded adaptively according to the data at each level, thus pre-miRNA neurons can be re-organized in a larger space.
format Objeto de conferencia
Resumen
author Bugnon, Leandro A.
Yones, Cristian
Milone, Diego H.
Stegmayer, Georgina
author_facet Bugnon, Leandro A.
Yones, Cristian
Milone, Diego H.
Stegmayer, Georgina
author_sort Bugnon, Leandro A.
title Deep neural architectures for highly imbalanced data in bioinformatics
title_short Deep neural architectures for highly imbalanced data in bioinformatics
title_full Deep neural architectures for highly imbalanced data in bioinformatics
title_fullStr Deep neural architectures for highly imbalanced data in bioinformatics
title_full_unstemmed Deep neural architectures for highly imbalanced data in bioinformatics
title_sort deep neural architectures for highly imbalanced data in bioinformatics
publishDate 2019
url http://sedici.unlp.edu.ar/handle/10915/87801
work_keys_str_mv AT bugnonleandroa deepneuralarchitecturesforhighlyimbalanceddatainbioinformatics
AT yonescristian deepneuralarchitecturesforhighlyimbalanceddatainbioinformatics
AT milonediegoh deepneuralarchitecturesforhighlyimbalanceddatainbioinformatics
AT stegmayergeorgina deepneuralarchitecturesforhighlyimbalanceddatainbioinformatics
bdutipo_str Repositorios
_version_ 1764820489400745985