Conformation-independent QSPR approach for the soil sorption coefficient of heterogeneous compounds

We predict the soil sorption coefficient for a heterogeneous set of 643 organic non-ionic compounds by means of Quantitative Structure-Property Relationships (QSPR). A conformation-independent representation of the chemical structure is established. The 17,538molecular descriptors derived with PaDEL...

Descripción completa

Detalles Bibliográficos
Autores principales: Aranda, José Francisco, Garro Martinez, Juan C., Castro, Eduardo Alberto, Duchowicz, Pablo Román
Formato: Articulo
Lenguaje:Inglés
Publicado: 2016
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/86908
Aporte de:
id I19-R120-10915-86908
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Química
Correlation and logic software
Estimation program interface suite software
Pharmaceutical data exploration laboratory software
Quantitative structure-property relationships
Replacement method
Soil sorption coefficient
spellingShingle Química
Correlation and logic software
Estimation program interface suite software
Pharmaceutical data exploration laboratory software
Quantitative structure-property relationships
Replacement method
Soil sorption coefficient
Aranda, José Francisco
Garro Martinez, Juan C.
Castro, Eduardo Alberto
Duchowicz, Pablo Román
Conformation-independent QSPR approach for the soil sorption coefficient of heterogeneous compounds
topic_facet Química
Correlation and logic software
Estimation program interface suite software
Pharmaceutical data exploration laboratory software
Quantitative structure-property relationships
Replacement method
Soil sorption coefficient
description We predict the soil sorption coefficient for a heterogeneous set of 643 organic non-ionic compounds by means of Quantitative Structure-Property Relationships (QSPR). A conformation-independent representation of the chemical structure is established. The 17,538molecular descriptors derived with PaDEL and EPI Suite softwares are simultaneously analyzed through linear regressions obtained with the Replacement Method variable subset selection technique. The best predictive three-descriptors QSPR is developed on a reduced training set of 93 chemicals, having an acceptable predictive capability on 550 test set compounds. We also establish a model with a single optimal descriptor derived from CORAL freeware. The present approach compares fairly well with a previously reported one that uses Dragon descriptors.
format Articulo
Articulo
author Aranda, José Francisco
Garro Martinez, Juan C.
Castro, Eduardo Alberto
Duchowicz, Pablo Román
author_facet Aranda, José Francisco
Garro Martinez, Juan C.
Castro, Eduardo Alberto
Duchowicz, Pablo Román
author_sort Aranda, José Francisco
title Conformation-independent QSPR approach for the soil sorption coefficient of heterogeneous compounds
title_short Conformation-independent QSPR approach for the soil sorption coefficient of heterogeneous compounds
title_full Conformation-independent QSPR approach for the soil sorption coefficient of heterogeneous compounds
title_fullStr Conformation-independent QSPR approach for the soil sorption coefficient of heterogeneous compounds
title_full_unstemmed Conformation-independent QSPR approach for the soil sorption coefficient of heterogeneous compounds
title_sort conformation-independent qspr approach for the soil sorption coefficient of heterogeneous compounds
publishDate 2016
url http://sedici.unlp.edu.ar/handle/10915/86908
work_keys_str_mv AT arandajosefrancisco conformationindependentqsprapproachforthesoilsorptioncoefficientofheterogeneouscompounds
AT garromartinezjuanc conformationindependentqsprapproachforthesoilsorptioncoefficientofheterogeneouscompounds
AT castroeduardoalberto conformationindependentqsprapproachforthesoilsorptioncoefficientofheterogeneouscompounds
AT duchowiczpabloroman conformationindependentqsprapproachforthesoilsorptioncoefficientofheterogeneouscompounds
bdutipo_str Repositorios
_version_ 1764820489441640452