Characterization of spatial-temporal patterns in dynamic speckle sequences using principal component analysis
Speckle is being used as a characterization tool for the analysis of the dynamics of slow-varying phenomena occurring in biological and industrial samples at the surface or near-surface regions. The retrieved data take the form of a sequence of speckle images. These images contain information about...
Guardado en:
| Autores principales: | , , , , , |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Inglés |
| Publicado: |
2016
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/85904 |
| Aporte de: |
| id |
I19-R120-10915-85904 |
|---|---|
| record_format |
dspace |
| institution |
Universidad Nacional de La Plata |
| institution_str |
I-19 |
| repository_str |
R-120 |
| collection |
SEDICI (UNLP) |
| language |
Inglés |
| topic |
Ingeniería Ciencias Exactas dynamic speckle principal components analysis |
| spellingShingle |
Ingeniería Ciencias Exactas dynamic speckle principal components analysis López Alonso, José Manuel Grumel, Eduardo Emilio Cap, Nelly Lucía Trivi, Marcelo Ricardo Rabal, Héctor Jorge Alda, Javier Characterization of spatial-temporal patterns in dynamic speckle sequences using principal component analysis |
| topic_facet |
Ingeniería Ciencias Exactas dynamic speckle principal components analysis |
| description |
Speckle is being used as a characterization tool for the analysis of the dynamics of slow-varying phenomena occurring in biological and industrial samples at the surface or near-surface regions. The retrieved data take the form of a sequence of speckle images. These images contain information about the inner dynamics of the biological or physical process taking place in the sample. Principal component analysis (PCA) is able to split the original data set into a collection of classes. These classes are related to processes showing different dynamics. In addition, statistical descriptors of speckle images are used to retrieve information on the characteristics of the sample. These statistical descriptors can be calculated in almost real time and provide a fast monitoring of the sample. On the other hand, PCA requires a longer computation time, but the results contain more information related to spatial-temporal patterns associated to the process under analysis. This contribution merges both descriptions and uses PCA as a preprocessing tool to obtain a collection of filtered images, where statistical descriptors are evaluated on each of them. The method applies to slow-varying biological and industrial processes. |
| format |
Articulo Articulo |
| author |
López Alonso, José Manuel Grumel, Eduardo Emilio Cap, Nelly Lucía Trivi, Marcelo Ricardo Rabal, Héctor Jorge Alda, Javier |
| author_facet |
López Alonso, José Manuel Grumel, Eduardo Emilio Cap, Nelly Lucía Trivi, Marcelo Ricardo Rabal, Héctor Jorge Alda, Javier |
| author_sort |
López Alonso, José Manuel |
| title |
Characterization of spatial-temporal patterns in dynamic speckle sequences using principal component analysis |
| title_short |
Characterization of spatial-temporal patterns in dynamic speckle sequences using principal component analysis |
| title_full |
Characterization of spatial-temporal patterns in dynamic speckle sequences using principal component analysis |
| title_fullStr |
Characterization of spatial-temporal patterns in dynamic speckle sequences using principal component analysis |
| title_full_unstemmed |
Characterization of spatial-temporal patterns in dynamic speckle sequences using principal component analysis |
| title_sort |
characterization of spatial-temporal patterns in dynamic speckle sequences using principal component analysis |
| publishDate |
2016 |
| url |
http://sedici.unlp.edu.ar/handle/10915/85904 |
| work_keys_str_mv |
AT lopezalonsojosemanuel characterizationofspatialtemporalpatternsindynamicspecklesequencesusingprincipalcomponentanalysis AT grumeleduardoemilio characterizationofspatialtemporalpatternsindynamicspecklesequencesusingprincipalcomponentanalysis AT capnellylucia characterizationofspatialtemporalpatternsindynamicspecklesequencesusingprincipalcomponentanalysis AT trivimarceloricardo characterizationofspatialtemporalpatternsindynamicspecklesequencesusingprincipalcomponentanalysis AT rabalhectorjorge characterizationofspatialtemporalpatternsindynamicspecklesequencesusingprincipalcomponentanalysis AT aldajavier characterizationofspatialtemporalpatternsindynamicspecklesequencesusingprincipalcomponentanalysis |
| bdutipo_str |
Repositorios |
| _version_ |
1764820489092464640 |