Calibration of semi-analytic models of galaxy formation using particle swarm optimization

We present a fast and accurate method to select an optimal set of parameters in semi-analytic models of galaxy formation and evolution (SAMs). Our approach compares the results of a model against a set of observables applying a stochastic technique called Particle Swarm Optimization (PSO), a self-le...

Descripción completa

Detalles Bibliográficos
Autores principales: Ruiz, Andrés N., Cora, Sofía Alejandra, Padilla, Nelson D., Domínguez, Mariano J., Vega Martínez, Cristian Antonio, Tecce, Tomás E., Orsi, Álvaro, Yaryura, Yamila, García Lambas, Diego, Gargiulo, Ignacio Daniel, Muñoz Arancibia, Alejandra M.
Formato: Articulo
Lenguaje:Inglés
Publicado: 2015
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/85874
Aporte de:
id I19-R120-10915-85874
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Ciencias Astronómicas
galaxies: evolution
galaxies: formation
methods: numerical
methods: statistical
spellingShingle Ciencias Astronómicas
galaxies: evolution
galaxies: formation
methods: numerical
methods: statistical
Ruiz, Andrés N.
Cora, Sofía Alejandra
Padilla, Nelson D.
Domínguez, Mariano J.
Vega Martínez, Cristian Antonio
Tecce, Tomás E.
Orsi, Álvaro
Yaryura, Yamila
García Lambas, Diego
Gargiulo, Ignacio Daniel
Muñoz Arancibia, Alejandra M.
Calibration of semi-analytic models of galaxy formation using particle swarm optimization
topic_facet Ciencias Astronómicas
galaxies: evolution
galaxies: formation
methods: numerical
methods: statistical
description We present a fast and accurate method to select an optimal set of parameters in semi-analytic models of galaxy formation and evolution (SAMs). Our approach compares the results of a model against a set of observables applying a stochastic technique called Particle Swarm Optimization (PSO), a self-learning algorithm for localizing regions of maximum likelihood in multidimensional spaces that outperforms traditional sampling methods in terms of computational cost. We apply the PSO technique to the SAG semi-analytic model combined with merger trees extracted from a standard Lambda Cold Dark Matter N-body simulation. The calibration is performed using a combination of observed galaxy properties as constraints, including the local stellar mass function and the black hole to bulge mass relation. We test the ability of the PSO algorithm to find the best set of free parameters of the model by comparing the results with those obtained using a MCMC exploration. Both methods find the same maximum likelihood region, however, the PSO method requires one order of magnitude fewer evaluations. This new approach allows a fast estimation of the best-fitting parameter set in multidimensional spaces, providing a practical tool to test the consequences of including other astrophysical processes in SAMs.
format Articulo
Articulo
author Ruiz, Andrés N.
Cora, Sofía Alejandra
Padilla, Nelson D.
Domínguez, Mariano J.
Vega Martínez, Cristian Antonio
Tecce, Tomás E.
Orsi, Álvaro
Yaryura, Yamila
García Lambas, Diego
Gargiulo, Ignacio Daniel
Muñoz Arancibia, Alejandra M.
author_facet Ruiz, Andrés N.
Cora, Sofía Alejandra
Padilla, Nelson D.
Domínguez, Mariano J.
Vega Martínez, Cristian Antonio
Tecce, Tomás E.
Orsi, Álvaro
Yaryura, Yamila
García Lambas, Diego
Gargiulo, Ignacio Daniel
Muñoz Arancibia, Alejandra M.
author_sort Ruiz, Andrés N.
title Calibration of semi-analytic models of galaxy formation using particle swarm optimization
title_short Calibration of semi-analytic models of galaxy formation using particle swarm optimization
title_full Calibration of semi-analytic models of galaxy formation using particle swarm optimization
title_fullStr Calibration of semi-analytic models of galaxy formation using particle swarm optimization
title_full_unstemmed Calibration of semi-analytic models of galaxy formation using particle swarm optimization
title_sort calibration of semi-analytic models of galaxy formation using particle swarm optimization
publishDate 2015
url http://sedici.unlp.edu.ar/handle/10915/85874
work_keys_str_mv AT ruizandresn calibrationofsemianalyticmodelsofgalaxyformationusingparticleswarmoptimization
AT corasofiaalejandra calibrationofsemianalyticmodelsofgalaxyformationusingparticleswarmoptimization
AT padillanelsond calibrationofsemianalyticmodelsofgalaxyformationusingparticleswarmoptimization
AT dominguezmarianoj calibrationofsemianalyticmodelsofgalaxyformationusingparticleswarmoptimization
AT vegamartinezcristianantonio calibrationofsemianalyticmodelsofgalaxyformationusingparticleswarmoptimization
AT teccetomase calibrationofsemianalyticmodelsofgalaxyformationusingparticleswarmoptimization
AT orsialvaro calibrationofsemianalyticmodelsofgalaxyformationusingparticleswarmoptimization
AT yaryurayamila calibrationofsemianalyticmodelsofgalaxyformationusingparticleswarmoptimization
AT garcialambasdiego calibrationofsemianalyticmodelsofgalaxyformationusingparticleswarmoptimization
AT gargiuloignaciodaniel calibrationofsemianalyticmodelsofgalaxyformationusingparticleswarmoptimization
AT munozarancibiaalejandram calibrationofsemianalyticmodelsofgalaxyformationusingparticleswarmoptimization
bdutipo_str Repositorios
_version_ 1764820489063104512