On asteroidal sets in chordal graphs
We analyze the relation between three parameters of a chordal graph G: the number of non-separating cliques nsc(G), the asteroidal number an(G) and the leafage l(G). We show that an(G) is equal to the maximum value of nsc(H) over all connected induced subgraphs H of G. As a corollary, we prove that...
Guardado en:
| Autor principal: | Alcón, Liliana Graciela |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Inglés |
| Publicado: |
2014
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/85141 |
| Aporte de: |
Ejemplares similares
-
Determining what sets of trees can be the clique trees of a chordal graph
por: De Caria, Pablo Jesús, et al.
Publicado: (2011) -
On the correspondence between tree representations of chordal and dually chordal graphs
por: De Caria, Pablo Jesús, et al.
Publicado: (2014) -
Comparing trees characteristic to chordal and dually chordal graphs
por: De Caria, Pablo Jesús, et al.
Publicado: (2011) -
Maxclique and unit disk characterizations of strongly chordal graphs
por: De Caria, Pablo Jesús, et al.
Publicado: (2014) -
On minimal vertex separators of dually chordal graphs: properties and characterizations
por: De Caria, Pablo Jesús, et al.
Publicado: (2012)