On asteroidal sets in chordal graphs
We analyze the relation between three parameters of a chordal graph G: the number of non-separating cliques nsc(G), the asteroidal number an(G) and the leafage l(G). We show that an(G) is equal to the maximum value of nsc(H) over all connected induced subgraphs H of G. As a corollary, we prove that...
Guardado en:
| Autor principal: | |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Inglés |
| Publicado: |
2014
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/85141 |
| Aporte de: |
| id |
I19-R120-10915-85141 |
|---|---|
| record_format |
dspace |
| institution |
Universidad Nacional de La Plata |
| institution_str |
I-19 |
| repository_str |
R-120 |
| collection |
SEDICI (UNLP) |
| language |
Inglés |
| topic |
Matemática Asteroidal number Chordal graphs Clique separators Clutters Leafage Sperner families |
| spellingShingle |
Matemática Asteroidal number Chordal graphs Clique separators Clutters Leafage Sperner families Alcón, Liliana Graciela On asteroidal sets in chordal graphs |
| topic_facet |
Matemática Asteroidal number Chordal graphs Clique separators Clutters Leafage Sperner families |
| description |
We analyze the relation between three parameters of a chordal graph G: the number of non-separating cliques nsc(G), the asteroidal number an(G) and the leafage l(G). We show that an(G) is equal to the maximum value of nsc(H) over all connected induced subgraphs H of G. As a corollary, we prove that if G has no separating simplicial cliques then an(G)=l(G). A graph G is minimal k-asteroidal if an(G)=k and an(H)<k for every proper connected induced subgraph H of G. The family of minimal k-asteroidal chordal graphs is unknown for every k>3; for k=3 it is the family described by Lekerkerker and Boland to characterize interval graphs. We prove that, for every minimal k-asteroidal chordal graph, all the above parameters are equal to k. In addition, we characterize the split graphs that are minimal k-asteroidal and obtain all the minimal 4-asteroidal split graphs. Finally, we applied our results on asteroidal sets to describe the clutters with k edges that are minor-minimal in the sense that every minor has less than k edges. |
| format |
Articulo Articulo |
| author |
Alcón, Liliana Graciela |
| author_facet |
Alcón, Liliana Graciela |
| author_sort |
Alcón, Liliana Graciela |
| title |
On asteroidal sets in chordal graphs |
| title_short |
On asteroidal sets in chordal graphs |
| title_full |
On asteroidal sets in chordal graphs |
| title_fullStr |
On asteroidal sets in chordal graphs |
| title_full_unstemmed |
On asteroidal sets in chordal graphs |
| title_sort |
on asteroidal sets in chordal graphs |
| publishDate |
2014 |
| url |
http://sedici.unlp.edu.ar/handle/10915/85141 |
| work_keys_str_mv |
AT alconlilianagraciela onasteroidalsetsinchordalgraphs |
| bdutipo_str |
Repositorios |
| _version_ |
1764820489004384258 |