The progenitor of binary millisecond radio pulsar PSR J1713+0747

<b>Context.</b> PSR J1713+0747 is a binary system comprising millisecond radio pulsar with a spin period of 4.57 ms, and a low-mass white dwarf (WD) companion orbiting the pulsar with a period of 67.8 days. Using the general relativistic Shapiro delay, the masses of the WD and pulsar com...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Chen, W. C., Panei, Jorge Alejandro
Formato: Articulo
Lenguaje:Inglés
Publicado: 2011
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/84271
Aporte de:
id I19-R120-10915-84271
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Ciencias Astronómicas
pulsars: general
stars: low-mass
white dwarfs
Estrellas
spellingShingle Ciencias Astronómicas
pulsars: general
stars: low-mass
white dwarfs
Estrellas
Chen, W. C.
Panei, Jorge Alejandro
The progenitor of binary millisecond radio pulsar PSR J1713+0747
topic_facet Ciencias Astronómicas
pulsars: general
stars: low-mass
white dwarfs
Estrellas
description <b>Context.</b> PSR J1713+0747 is a binary system comprising millisecond radio pulsar with a spin period of 4.57 ms, and a low-mass white dwarf (WD) companion orbiting the pulsar with a period of 67.8 days. Using the general relativistic Shapiro delay, the masses of the WD and pulsar components were previously found to be 0.28 ± 0.03 M⊙ and 1.3 ± 0.2 M ⊙ (68% confidence), respectively. <b>Aims.</b> Standard binary evolution theory suggests that PSR J1713+0747 evolved from a low-mass X-ray binary (LMXB). Here, we test this hypothesis. <b>Methods.</b> We used a binary evolution code and a WD evolution code to calculate evolutionary sequences of LMXBs that could result in binary millisecond radio pulsars such as PSR J1713+0747. <b>Results.</b> During the mass exchange, the mass transfer is nonconservative. Because of the thermal and viscous instabilities developing in the accretion disk, the neutron star accretes only a small part of the incoming material. We find that the progenitor of PSR J1713+0747 can be modelled as an LMXB including a donor star with mass 1.3 - 1.6 M⊙ and an initial orbital period ranging from 2.40 to 4.15 days. If the cooling timescale of the WD is 8 Gyr, its present effective temperature is between 3870 and 4120 K, slightly higher than the observed value. We estimate a surface gravity of Log(g) ≈ 7.38 - 7.40.
format Articulo
Articulo
author Chen, W. C.
Panei, Jorge Alejandro
author_facet Chen, W. C.
Panei, Jorge Alejandro
author_sort Chen, W. C.
title The progenitor of binary millisecond radio pulsar PSR J1713+0747
title_short The progenitor of binary millisecond radio pulsar PSR J1713+0747
title_full The progenitor of binary millisecond radio pulsar PSR J1713+0747
title_fullStr The progenitor of binary millisecond radio pulsar PSR J1713+0747
title_full_unstemmed The progenitor of binary millisecond radio pulsar PSR J1713+0747
title_sort progenitor of binary millisecond radio pulsar psr j1713+0747
publishDate 2011
url http://sedici.unlp.edu.ar/handle/10915/84271
work_keys_str_mv AT chenwc theprogenitorofbinarymillisecondradiopulsarpsrj17130747
AT paneijorgealejandro theprogenitorofbinarymillisecondradiopulsarpsrj17130747
AT chenwc progenitorofbinarymillisecondradiopulsarpsrj17130747
AT paneijorgealejandro progenitorofbinarymillisecondradiopulsarpsrj17130747
bdutipo_str Repositorios
_version_ 1764820488551399424