A posteriori error estimates for nonconforming approximations of Steklov eigenvalue problems
This paper deals with a posteriori error estimators for the non conforming CrouzeixRaviart finite element approximations of the Steklov eigenvalue problem. First, we define an error estimator of the residual type which can be computed locally from the approximate eigenpair and we prove the equivalen...
Guardado en:
| Autores principales: | , |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Inglés |
| Publicado: |
2011
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/84137 |
| Aporte de: |
| id |
I19-R120-10915-84137 |
|---|---|
| record_format |
dspace |
| institution |
Universidad Nacional de La Plata |
| institution_str |
I-19 |
| repository_str |
R-120 |
| collection |
SEDICI (UNLP) |
| language |
Inglés |
| topic |
Matemática A posteriori error estimates Nonconforming finite element methods Steklov eigenvalue problem |
| spellingShingle |
Matemática A posteriori error estimates Nonconforming finite element methods Steklov eigenvalue problem Dello Russo, Anahí Alonso, Ana Esther A posteriori error estimates for nonconforming approximations of Steklov eigenvalue problems |
| topic_facet |
Matemática A posteriori error estimates Nonconforming finite element methods Steklov eigenvalue problem |
| description |
This paper deals with a posteriori error estimators for the non conforming CrouzeixRaviart finite element approximations of the Steklov eigenvalue problem. First, we define an error estimator of the residual type which can be computed locally from the approximate eigenpair and we prove the equivalence between this estimator and the broken energy norm of the error with constants independent of the corresponding eigenvalue. Next, we prove that edge residuals dominate the volumetric part of the residual and that the volumetric part of the residual terms dominate the normal component of the jumps of the discrete fluxes across interior edges. Finally, based on these results, we introduce two simpler equivalent error estimators. The analysis shows that these a posteriori error estimates are optimal up to higher order terms and that may be used for the design of adaptive algorithms. |
| format |
Articulo Articulo |
| author |
Dello Russo, Anahí Alonso, Ana Esther |
| author_facet |
Dello Russo, Anahí Alonso, Ana Esther |
| author_sort |
Dello Russo, Anahí |
| title |
A posteriori error estimates for nonconforming approximations of Steklov eigenvalue problems |
| title_short |
A posteriori error estimates for nonconforming approximations of Steklov eigenvalue problems |
| title_full |
A posteriori error estimates for nonconforming approximations of Steklov eigenvalue problems |
| title_fullStr |
A posteriori error estimates for nonconforming approximations of Steklov eigenvalue problems |
| title_full_unstemmed |
A posteriori error estimates for nonconforming approximations of Steklov eigenvalue problems |
| title_sort |
posteriori error estimates for nonconforming approximations of steklov eigenvalue problems |
| publishDate |
2011 |
| url |
http://sedici.unlp.edu.ar/handle/10915/84137 |
| work_keys_str_mv |
AT dellorussoanahi aposteriorierrorestimatesfornonconformingapproximationsofstekloveigenvalueproblems AT alonsoanaesther aposteriorierrorestimatesfornonconformingapproximationsofstekloveigenvalueproblems AT dellorussoanahi posteriorierrorestimatesfornonconformingapproximationsofstekloveigenvalueproblems AT alonsoanaesther posteriorierrorestimatesfornonconformingapproximationsofstekloveigenvalueproblems |
| bdutipo_str |
Repositorios |
| _version_ |
1764820488410890245 |