Radiation driven winds with rotation: the oblate finite disc correction factor

We have incorporated the oblate distortion of the shape of the star due to the stellar rotation, which modifies the finite disk correction factor (f D) in the m-CAK hydrodynamical model. We implement a simplified version for the fD allowing us to solve numerically the non-linear m-CAK momentum equat...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Araya, Ignacio, Curé, Michel, Granada, Anahí, Cidale, Lydia Sonia
Formato: Articulo Comunicacion
Lenguaje:Inglés
Publicado: 2011
Materias:
Be
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/84055
Aporte de:
id I19-R120-10915-84055
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Ciencias Astronómicas
Ciencias Exactas
Be
Outflows
Stars: early-type
Stars: emission-line
Stars: rotation
Stars: winds
spellingShingle Ciencias Astronómicas
Ciencias Exactas
Be
Outflows
Stars: early-type
Stars: emission-line
Stars: rotation
Stars: winds
Araya, Ignacio
Curé, Michel
Granada, Anahí
Cidale, Lydia Sonia
Radiation driven winds with rotation: the oblate finite disc correction factor
topic_facet Ciencias Astronómicas
Ciencias Exactas
Be
Outflows
Stars: early-type
Stars: emission-line
Stars: rotation
Stars: winds
description We have incorporated the oblate distortion of the shape of the star due to the stellar rotation, which modifies the finite disk correction factor (f D) in the m-CAK hydrodynamical model. We implement a simplified version for the fD allowing us to solve numerically the non-linear m-CAK momentum equation. We solve this model for a classical Be star in the polar and equatorial directions. The star's oblateness modifies the polar wind, which is now much faster than the spherical one, mainly because the wind receives radiation from a larger (than the spherical) stellar surface. In the equatorial direction we obtain slow solutions, which are even slower and denser than the spherical ones. For the case when the stellar rotational velocity is about the critical velocity, the most remarkable result of our calculations is that the density contrast between the equatorial density and the polar one, is about 100. This result could explain a long-standing problem on Be stars.
format Articulo
Comunicacion
author Araya, Ignacio
Curé, Michel
Granada, Anahí
Cidale, Lydia Sonia
author_facet Araya, Ignacio
Curé, Michel
Granada, Anahí
Cidale, Lydia Sonia
author_sort Araya, Ignacio
title Radiation driven winds with rotation: the oblate finite disc correction factor
title_short Radiation driven winds with rotation: the oblate finite disc correction factor
title_full Radiation driven winds with rotation: the oblate finite disc correction factor
title_fullStr Radiation driven winds with rotation: the oblate finite disc correction factor
title_full_unstemmed Radiation driven winds with rotation: the oblate finite disc correction factor
title_sort radiation driven winds with rotation: the oblate finite disc correction factor
publishDate 2011
url http://sedici.unlp.edu.ar/handle/10915/84055
work_keys_str_mv AT arayaignacio radiationdrivenwindswithrotationtheoblatefinitedisccorrectionfactor
AT curemichel radiationdrivenwindswithrotationtheoblatefinitedisccorrectionfactor
AT granadaanahi radiationdrivenwindswithrotationtheoblatefinitedisccorrectionfactor
AT cidalelydiasonia radiationdrivenwindswithrotationtheoblatefinitedisccorrectionfactor
bdutipo_str Repositorios
_version_ 1764820488332247040