Solutions of the divergence operator on John domains

If Ω ⊂ Rn is a bounded domain, the existence of solutions u ∈ W01, p (Ω) of div u = f for f ∈ Lp (Ω) with vanishing mean value and 1 < p < ∞, is a basic result in the analysis of the Stokes equations. It is known that the result holds when Ω is a Lipschitz domain and that it is not valid for d...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Acosta, Gabriel, Durán, Ricardo G., Muschietti, María Amelia
Formato: Articulo
Lenguaje:Inglés
Publicado: 2005
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/83153
Aporte de:
id I19-R120-10915-83153
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Ciencias Exactas
Divergence operator
John domains
Singular integrals
spellingShingle Ciencias Exactas
Divergence operator
John domains
Singular integrals
Acosta, Gabriel
Durán, Ricardo G.
Muschietti, María Amelia
Solutions of the divergence operator on John domains
topic_facet Ciencias Exactas
Divergence operator
John domains
Singular integrals
description If Ω ⊂ Rn is a bounded domain, the existence of solutions u ∈ W01, p (Ω) of div u = f for f ∈ Lp (Ω) with vanishing mean value and 1 < p < ∞, is a basic result in the analysis of the Stokes equations. It is known that the result holds when Ω is a Lipschitz domain and that it is not valid for domains with external cusps. In this paper we prove that the result holds for John domains. Our proof is constructive: the solution u is given by an explicit integral operator acting on f. To prove that u ∈ W01, p (Ω) we make use of the Calderón-Zygmund singular integral operator theory and the Hardy-Littlewood maximal function. For domains satisfying the separation property introduced in [S. Buckley, P. Koskela, Sobolev-Poincaré implies John, Math. Res. Lett. 2 (5) (1995) 577-593], and 1 < p < n, we also prove a converse result, thus characterizing in this case the domains for which a continuous right inverse of the divergence exists. In particular, our result applies to simply connected planar domains because they satisfy the separation property.
format Articulo
Articulo
author Acosta, Gabriel
Durán, Ricardo G.
Muschietti, María Amelia
author_facet Acosta, Gabriel
Durán, Ricardo G.
Muschietti, María Amelia
author_sort Acosta, Gabriel
title Solutions of the divergence operator on John domains
title_short Solutions of the divergence operator on John domains
title_full Solutions of the divergence operator on John domains
title_fullStr Solutions of the divergence operator on John domains
title_full_unstemmed Solutions of the divergence operator on John domains
title_sort solutions of the divergence operator on john domains
publishDate 2005
url http://sedici.unlp.edu.ar/handle/10915/83153
work_keys_str_mv AT acostagabriel solutionsofthedivergenceoperatoronjohndomains
AT duranricardog solutionsofthedivergenceoperatoronjohndomains
AT muschiettimariaamelia solutionsofthedivergenceoperatoronjohndomains
bdutipo_str Repositorios
_version_ 1764820488341684225