Identification and characterization of crops through the analysis of spectral data with machine learning algorithms
This paper assesses the capability of an spectrometer used in field experiments of soybean, maize and wheat. The objective of this work is to select different wavelengths intervals of the spectral reflectance curve, within the range 632-1125 nm, as features for classification using machine learning...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | Objeto de conferencia |
Lenguaje: | Inglés |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/71510 http://47jaiio.sadio.org.ar/sites/default/files/CAI-50.pdf |
Aporte de: |
id |
I19-R120-10915-71510 |
---|---|
record_format |
dspace |
institution |
Universidad Nacional de La Plata |
institution_str |
I-19 |
repository_str |
R-120 |
collection |
SEDICI (UNLP) |
language |
Inglés |
topic |
Ciencias Informáticas remote sensing NIR spectral feature selection |
spellingShingle |
Ciencias Informáticas remote sensing NIR spectral feature selection Rigalli, Nicolás Francisco Montero Bulacio, Enrique Romagnoli, Martín Terissi, Lucas D. Portapila, Margarita Isabel Identification and characterization of crops through the analysis of spectral data with machine learning algorithms |
topic_facet |
Ciencias Informáticas remote sensing NIR spectral feature selection |
description |
This paper assesses the capability of an spectrometer used in field experiments of soybean, maize and wheat. The objective of this work is to select different wavelengths intervals of the spectral reflectance curve, within the range 632-1125 nm, as features for classification using machine learning methods. Two different classifications are presented, species selection and growth stage identification. For species classification accuracy of 92% is reached, while 99% is obtained for stage classification.
In addition we propose a new index that outperforms analyzed established vegetation indices, which shows the potential advantage of using this type of devices. |
format |
Objeto de conferencia Objeto de conferencia |
author |
Rigalli, Nicolás Francisco Montero Bulacio, Enrique Romagnoli, Martín Terissi, Lucas D. Portapila, Margarita Isabel |
author_facet |
Rigalli, Nicolás Francisco Montero Bulacio, Enrique Romagnoli, Martín Terissi, Lucas D. Portapila, Margarita Isabel |
author_sort |
Rigalli, Nicolás Francisco |
title |
Identification and characterization of crops through the analysis of spectral data with
machine learning algorithms |
title_short |
Identification and characterization of crops through the analysis of spectral data with
machine learning algorithms |
title_full |
Identification and characterization of crops through the analysis of spectral data with
machine learning algorithms |
title_fullStr |
Identification and characterization of crops through the analysis of spectral data with
machine learning algorithms |
title_full_unstemmed |
Identification and characterization of crops through the analysis of spectral data with
machine learning algorithms |
title_sort |
identification and characterization of crops through the analysis of spectral data with
machine learning algorithms |
publishDate |
2018 |
url |
http://sedici.unlp.edu.ar/handle/10915/71510 http://47jaiio.sadio.org.ar/sites/default/files/CAI-50.pdf |
work_keys_str_mv |
AT rigallinicolasfrancisco identificationandcharacterizationofcropsthroughtheanalysisofspectraldatawithmachinelearningalgorithms AT monterobulacioenrique identificationandcharacterizationofcropsthroughtheanalysisofspectraldatawithmachinelearningalgorithms AT romagnolimartin identificationandcharacterizationofcropsthroughtheanalysisofspectraldatawithmachinelearningalgorithms AT terissilucasd identificationandcharacterizationofcropsthroughtheanalysisofspectraldatawithmachinelearningalgorithms AT portapilamargaritaisabel identificationandcharacterizationofcropsthroughtheanalysisofspectraldatawithmachinelearningalgorithms |
bdutipo_str |
Repositorios |
_version_ |
1764820482396258304 |