Multi-agent Learning by Trial and Error for Resource Leveling during Multi-Project (Re)scheduling

In a multi-project context within enterprise networks, reaching feasible solutions to the (re)scheduling problem represents a major challenge, mainly when scarce resources are shared among projects. Thus, the multi-project (re)scheduling must achieve the most efficient possible resource usage withou...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Tosselli, Laura, Bogado, Verónica S., Martínez, Ernesto
Formato: Articulo
Lenguaje:Inglés
Publicado: 2018
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/70117
Aporte de:
id I19-R120-10915-70117
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Ciencias Informáticas
agent-based simulation
multi-agent system
multi-project (re)scheduling
project-oriented fractal organization
resource leveling
nivelación de recursos
organización fractal orientada a proyectos
(re)scheduling de múltiples proyectos
simulación basada en agentes
sistema multi-agente
spellingShingle Ciencias Informáticas
agent-based simulation
multi-agent system
multi-project (re)scheduling
project-oriented fractal organization
resource leveling
nivelación de recursos
organización fractal orientada a proyectos
(re)scheduling de múltiples proyectos
simulación basada en agentes
sistema multi-agente
Tosselli, Laura
Bogado, Verónica S.
Martínez, Ernesto
Multi-agent Learning by Trial and Error for Resource Leveling during Multi-Project (Re)scheduling
topic_facet Ciencias Informáticas
agent-based simulation
multi-agent system
multi-project (re)scheduling
project-oriented fractal organization
resource leveling
nivelación de recursos
organización fractal orientada a proyectos
(re)scheduling de múltiples proyectos
simulación basada en agentes
sistema multi-agente
description In a multi-project context within enterprise networks, reaching feasible solutions to the (re)scheduling problem represents a major challenge, mainly when scarce resources are shared among projects. Thus, the multi-project (re)scheduling must achieve the most efficient possible resource usage without increasing the prescribed project constraints, considering the Resource Leveling Problem (RLP), whose objective is to level the consumption of resources shared in order to minimize their idle times and to avoid overallocation conflicts. In this work, a multi-agent solution that allows solving the Resource Constrained Multi-project Scheduling Problem (RCMPSP) and the Resource Investment Problem (RIP) is extended to incorporate indicators on agents’ payoff functions to address the Resource Leveling Problem in a decentralized and autonomous way, through decoupled rules based on Trial-and-Error approach. The proposed agent-based simulation model is tested through a set of project instances that vary in their structure, parameters, number of resources shared, etc. Results obtained are assessed through different scheduling goals, such as project total duration, project total cost and leveling resource usage. Our results are far better compared to the ones obtained with alternative approaches. This proposal shows that the interacting agents that implement decoupled learning rules find a solution which can be understood as a Nash equilibrium.
format Articulo
Articulo
author Tosselli, Laura
Bogado, Verónica S.
Martínez, Ernesto
author_facet Tosselli, Laura
Bogado, Verónica S.
Martínez, Ernesto
author_sort Tosselli, Laura
title Multi-agent Learning by Trial and Error for Resource Leveling during Multi-Project (Re)scheduling
title_short Multi-agent Learning by Trial and Error for Resource Leveling during Multi-Project (Re)scheduling
title_full Multi-agent Learning by Trial and Error for Resource Leveling during Multi-Project (Re)scheduling
title_fullStr Multi-agent Learning by Trial and Error for Resource Leveling during Multi-Project (Re)scheduling
title_full_unstemmed Multi-agent Learning by Trial and Error for Resource Leveling during Multi-Project (Re)scheduling
title_sort multi-agent learning by trial and error for resource leveling during multi-project (re)scheduling
publishDate 2018
url http://sedici.unlp.edu.ar/handle/10915/70117
work_keys_str_mv AT tossellilaura multiagentlearningbytrialanderrorforresourcelevelingduringmultiprojectrescheduling
AT bogadoveronicas multiagentlearningbytrialanderrorforresourcelevelingduringmultiprojectrescheduling
AT martinezernesto multiagentlearningbytrialanderrorforresourcelevelingduringmultiprojectrescheduling
AT tossellilaura aprendizajemultiagenteutilizandotrialanderrorparalanivelacionderecursosduranteelreschedulingdemultiplesproyectos
AT bogadoveronicas aprendizajemultiagenteutilizandotrialanderrorparalanivelacionderecursosduranteelreschedulingdemultiplesproyectos
AT martinezernesto aprendizajemultiagenteutilizandotrialanderrorparalanivelacionderecursosduranteelreschedulingdemultiplesproyectos
bdutipo_str Repositorios
_version_ 1764820482147745793