Implementing cloud-based parallel metaheuristics: an overview
Metaheuristics are among the most popular methods for solving hard global optimization problems in many areas of science and engineering. Their parallel implementation applying HPC techniques is a common approach for efficiently using available resources to reduce the time needed to get a good enoug...
Autores principales: | , , , |
---|---|
Formato: | Objeto de conferencia |
Lenguaje: | Inglés |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/69947 |
Aporte de: |
id |
I19-R120-10915-69947 |
---|---|
record_format |
dspace |
institution |
Universidad Nacional de La Plata |
institution_str |
I-19 |
repository_str |
R-120 |
collection |
SEDICI (UNLP) |
language |
Inglés |
topic |
Ciencias Informáticas parallel metaheuristics, cloud computing, MPI, MapReduce, Spark Heuristic methods |
spellingShingle |
Ciencias Informáticas parallel metaheuristics, cloud computing, MPI, MapReduce, Spark Heuristic methods González, Patricia Pardo, Xoán C. Doallo, Ramón Banga, Julio R. Implementing cloud-based parallel metaheuristics: an overview |
topic_facet |
Ciencias Informáticas parallel metaheuristics, cloud computing, MPI, MapReduce, Spark Heuristic methods |
description |
Metaheuristics are among the most popular methods for solving hard global optimization problems in many areas of science and engineering. Their parallel implementation applying HPC techniques is a common approach for efficiently using available resources to reduce the time needed to get a good enough solution to hard-to-solve problems. Paradigms like MPI or OMP are the usual choice when executing them in clusters or supercomputers. Moreover, the pervasive presence of cloud computing and the emergence of programming models like MapReduce or Spark have given rise to an increasing interest in porting HPC workloads to the cloud, as is the case with parallel metaheuristics. In this paper we give an overview of our experience with different alternatives for porting parallel metaheuristics to the cloud, providing some useful insights to the interested reader that we have acquired through extensive experimentation. |
format |
Objeto de conferencia Objeto de conferencia |
author |
González, Patricia Pardo, Xoán C. Doallo, Ramón Banga, Julio R. |
author_facet |
González, Patricia Pardo, Xoán C. Doallo, Ramón Banga, Julio R. |
author_sort |
González, Patricia |
title |
Implementing cloud-based parallel metaheuristics: an overview |
title_short |
Implementing cloud-based parallel metaheuristics: an overview |
title_full |
Implementing cloud-based parallel metaheuristics: an overview |
title_fullStr |
Implementing cloud-based parallel metaheuristics: an overview |
title_full_unstemmed |
Implementing cloud-based parallel metaheuristics: an overview |
title_sort |
implementing cloud-based parallel metaheuristics: an overview |
publishDate |
2018 |
url |
http://sedici.unlp.edu.ar/handle/10915/69947 |
work_keys_str_mv |
AT gonzalezpatricia implementingcloudbasedparallelmetaheuristicsanoverview AT pardoxoanc implementingcloudbasedparallelmetaheuristicsanoverview AT doalloramon implementingcloudbasedparallelmetaheuristicsanoverview AT bangajulior implementingcloudbasedparallelmetaheuristicsanoverview |
bdutipo_str |
Repositorios |
_version_ |
1764820481936982017 |