On Exploring Proactive Cloud Elasticity for Internet of Things Demands
Today, Internet of Things (IoT) is an emergent concept in which billions of devices are connected to Internet capable of producing and exchanging data. One of the most used technologies in this area regards to the Radio Frequency Identification (RFID). It can produce large amount of data from many t...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | Objeto de conferencia |
Lenguaje: | Inglés |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/65515 |
Aporte de: |
id |
I19-R120-10915-65515 |
---|---|
record_format |
dspace |
institution |
Universidad Nacional de La Plata |
institution_str |
I-19 |
repository_str |
R-120 |
collection |
SEDICI (UNLP) |
language |
Inglés |
topic |
Ciencias Informáticas Internet of Things cloud elasticity middleware RFID EPCGlobal |
spellingShingle |
Ciencias Informáticas Internet of Things cloud elasticity middleware RFID EPCGlobal Rodrigues, Vinicius F. Correa, Everton Costa, Cristiano Andres da Righi, Rodrigo da Rosa On Exploring Proactive Cloud Elasticity for Internet of Things Demands |
topic_facet |
Ciencias Informáticas Internet of Things cloud elasticity middleware RFID EPCGlobal |
description |
Today, Internet of Things (IoT) is an emergent concept in which billions of devices are connected to Internet capable of producing and exchanging data. One of the most used technologies in this area regards to the Radio Frequency Identification (RFID). It can produce large amount of data from many things like objects, persons and assets. Thus, it is needed middlewares which must support processing in large scales. However, the state-of-the-art does not present satisfactory solutions in which this kind of middlewares are capable of adapt themselves according to processing demands. In this context, this article presents a proactive cloud elasticity model called Proliot aiming at providing scalability to IoT middlewares. Proliot is capable of predicting load behavior combining time series techniques. In addition, it adapts cloud resources beforehand an overload or underload situation occurs. We evaluated our model comparing results with a reactive elasticity model. In our experiments, Proliot achieved best performance up to 76% when compared to Eliot. |
format |
Objeto de conferencia Objeto de conferencia |
author |
Rodrigues, Vinicius F. Correa, Everton Costa, Cristiano Andres da Righi, Rodrigo da Rosa |
author_facet |
Rodrigues, Vinicius F. Correa, Everton Costa, Cristiano Andres da Righi, Rodrigo da Rosa |
author_sort |
Rodrigues, Vinicius F. |
title |
On Exploring Proactive Cloud Elasticity for Internet of Things Demands |
title_short |
On Exploring Proactive Cloud Elasticity for Internet of Things Demands |
title_full |
On Exploring Proactive Cloud Elasticity for Internet of Things Demands |
title_fullStr |
On Exploring Proactive Cloud Elasticity for Internet of Things Demands |
title_full_unstemmed |
On Exploring Proactive Cloud Elasticity for Internet of Things Demands |
title_sort |
on exploring proactive cloud elasticity for internet of things demands |
publishDate |
2017 |
url |
http://sedici.unlp.edu.ar/handle/10915/65515 |
work_keys_str_mv |
AT rodriguesviniciusf onexploringproactivecloudelasticityforinternetofthingsdemands AT correaeverton onexploringproactivecloudelasticityforinternetofthingsdemands AT costacristianoandresda onexploringproactivecloudelasticityforinternetofthingsdemands AT righirodrigodarosa onexploringproactivecloudelasticityforinternetofthingsdemands |
bdutipo_str |
Repositorios |
_version_ |
1764820480702808068 |