On Exploring Proactive Cloud Elasticity for Internet of Things Demands

Today, Internet of Things (IoT) is an emergent concept in which billions of devices are connected to Internet capable of producing and exchanging data. One of the most used technologies in this area regards to the Radio Frequency Identification (RFID). It can produce large amount of data from many t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Rodrigues, Vinicius F., Correa, Everton, Costa, Cristiano Andres da, Righi, Rodrigo da Rosa
Formato: Objeto de conferencia
Lenguaje:Inglés
Publicado: 2017
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/65515
Aporte de:
id I19-R120-10915-65515
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Ciencias Informáticas
Internet of Things
cloud elasticity
middleware
RFID
EPCGlobal
spellingShingle Ciencias Informáticas
Internet of Things
cloud elasticity
middleware
RFID
EPCGlobal
Rodrigues, Vinicius F.
Correa, Everton
Costa, Cristiano Andres da
Righi, Rodrigo da Rosa
On Exploring Proactive Cloud Elasticity for Internet of Things Demands
topic_facet Ciencias Informáticas
Internet of Things
cloud elasticity
middleware
RFID
EPCGlobal
description Today, Internet of Things (IoT) is an emergent concept in which billions of devices are connected to Internet capable of producing and exchanging data. One of the most used technologies in this area regards to the Radio Frequency Identification (RFID). It can produce large amount of data from many things like objects, persons and assets. Thus, it is needed middlewares which must support processing in large scales. However, the state-of-the-art does not present satisfactory solutions in which this kind of middlewares are capable of adapt themselves according to processing demands. In this context, this article presents a proactive cloud elasticity model called Proliot aiming at providing scalability to IoT middlewares. Proliot is capable of predicting load behavior combining time series techniques. In addition, it adapts cloud resources beforehand an overload or underload situation occurs. We evaluated our model comparing results with a reactive elasticity model. In our experiments, Proliot achieved best performance up to 76% when compared to Eliot.
format Objeto de conferencia
Objeto de conferencia
author Rodrigues, Vinicius F.
Correa, Everton
Costa, Cristiano Andres da
Righi, Rodrigo da Rosa
author_facet Rodrigues, Vinicius F.
Correa, Everton
Costa, Cristiano Andres da
Righi, Rodrigo da Rosa
author_sort Rodrigues, Vinicius F.
title On Exploring Proactive Cloud Elasticity for Internet of Things Demands
title_short On Exploring Proactive Cloud Elasticity for Internet of Things Demands
title_full On Exploring Proactive Cloud Elasticity for Internet of Things Demands
title_fullStr On Exploring Proactive Cloud Elasticity for Internet of Things Demands
title_full_unstemmed On Exploring Proactive Cloud Elasticity for Internet of Things Demands
title_sort on exploring proactive cloud elasticity for internet of things demands
publishDate 2017
url http://sedici.unlp.edu.ar/handle/10915/65515
work_keys_str_mv AT rodriguesviniciusf onexploringproactivecloudelasticityforinternetofthingsdemands
AT correaeverton onexploringproactivecloudelasticityforinternetofthingsdemands
AT costacristianoandresda onexploringproactivecloudelasticityforinternetofthingsdemands
AT righirodrigodarosa onexploringproactivecloudelasticityforinternetofthingsdemands
bdutipo_str Repositorios
_version_ 1764820480702808068