ESSIM-EA applied to Wildfire Prediction using Heterogeneous Configuration for Evolutionary Parameters

Wildfires devastate thousands forests acres every year around the world. Fire behavior prediction is a useful tool to cooperate in the coordination, mitigation and management of available resources to fight against this type of contingencies. However, the prediction of this phenomenon is usually a d...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Méndez Garabetti, Miguel, BIanchini, Germán, Caymes Scutari, Paola, Tardivo, María Laura, Gil Costa, Graciela Verónica
Formato: Objeto de conferencia
Lenguaje:Inglés
Publicado: 2017
Materias:
HPC
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/63485
Aporte de:
id I19-R120-10915-63485
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Ciencias Informáticas
Heuristic methods
wildfire prediction
HPC
uncertainty reduction
spellingShingle Ciencias Informáticas
Heuristic methods
wildfire prediction
HPC
uncertainty reduction
Méndez Garabetti, Miguel
BIanchini, Germán
Caymes Scutari, Paola
Tardivo, María Laura
Gil Costa, Graciela Verónica
ESSIM-EA applied to Wildfire Prediction using Heterogeneous Configuration for Evolutionary Parameters
topic_facet Ciencias Informáticas
Heuristic methods
wildfire prediction
HPC
uncertainty reduction
description Wildfires devastate thousands forests acres every year around the world. Fire behavior prediction is a useful tool to cooperate in the coordination, mitigation and management of available resources to fight against this type of contingencies. However, the prediction of this phenomenon is usually a difficult task due to the uncertainty in the prediction process. Therefore, several methods of uncertainty reduction have been developed, such as the Evolutionary Statistical System with Island Models based on Evolutionary Algorithms (ESSIM-EA). ESSIMEA focuses its operation on an Evolutionary Parallel Algorithm based on islands, in which the same configuration of evolutionary parameters is used. In this work we present an extension of the ESSIM-EA that allows each island to select an independent configuration of evolutionary parameters. The heterogeneous configuration proposed, at the island level, with the original methodology in three cases of controlled fires has been contrasted. The results show that the proposed ESSIM-EA extension allows to improve the quality of prediction and to reduce processing times.
format Objeto de conferencia
Objeto de conferencia
author Méndez Garabetti, Miguel
BIanchini, Germán
Caymes Scutari, Paola
Tardivo, María Laura
Gil Costa, Graciela Verónica
author_facet Méndez Garabetti, Miguel
BIanchini, Germán
Caymes Scutari, Paola
Tardivo, María Laura
Gil Costa, Graciela Verónica
author_sort Méndez Garabetti, Miguel
title ESSIM-EA applied to Wildfire Prediction using Heterogeneous Configuration for Evolutionary Parameters
title_short ESSIM-EA applied to Wildfire Prediction using Heterogeneous Configuration for Evolutionary Parameters
title_full ESSIM-EA applied to Wildfire Prediction using Heterogeneous Configuration for Evolutionary Parameters
title_fullStr ESSIM-EA applied to Wildfire Prediction using Heterogeneous Configuration for Evolutionary Parameters
title_full_unstemmed ESSIM-EA applied to Wildfire Prediction using Heterogeneous Configuration for Evolutionary Parameters
title_sort essim-ea applied to wildfire prediction using heterogeneous configuration for evolutionary parameters
publishDate 2017
url http://sedici.unlp.edu.ar/handle/10915/63485
work_keys_str_mv AT mendezgarabettimiguel essimeaappliedtowildfirepredictionusingheterogeneousconfigurationforevolutionaryparameters
AT bianchinigerman essimeaappliedtowildfirepredictionusingheterogeneousconfigurationforevolutionaryparameters
AT caymesscutaripaola essimeaappliedtowildfirepredictionusingheterogeneousconfigurationforevolutionaryparameters
AT tardivomarialaura essimeaappliedtowildfirepredictionusingheterogeneousconfigurationforevolutionaryparameters
AT gilcostagracielaveronica essimeaappliedtowildfirepredictionusingheterogeneousconfigurationforevolutionaryparameters
bdutipo_str Repositorios
_version_ 1764820480839122947