Mining the biomedical literature to predict shared drug targets in drugbank
The current drug development pipelines are characterised by long processes with high attrition rates and elevated costs. More than 80% of new compounds fail in the later stages of testing due to severe side-effects caused by unknown biomolecular targets of the compounds. In this work, we present a m...
Guardado en:
| Autores principales: | , , |
|---|---|
| Formato: | Objeto de conferencia |
| Lenguaje: | Inglés |
| Publicado: |
2017
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/63201 http://www.clei2017-46jaiio.sadio.org.ar/sites/default/files/Mem/SLMDI/SLMDI-03.pdf |
| Aporte de: |
| id |
I19-R120-10915-63201 |
|---|---|
| record_format |
dspace |
| institution |
Universidad Nacional de La Plata |
| institution_str |
I-19 |
| repository_str |
R-120 |
| collection |
SEDICI (UNLP) |
| language |
Inglés |
| topic |
Ciencias Informáticas MeSH terms drug descriptors drug targets drugbank |
| spellingShingle |
Ciencias Informáticas MeSH terms drug descriptors drug targets drugbank Caniza, Horacio Galeano, Diego Paccanaro, Alberto Mining the biomedical literature to predict shared drug targets in drugbank |
| topic_facet |
Ciencias Informáticas MeSH terms drug descriptors drug targets drugbank |
| description |
The current drug development pipelines are characterised by long processes with high attrition rates and elevated costs. More than 80% of new compounds fail in the later stages of testing due to severe side-effects caused by unknown biomolecular targets of the compounds. In this work, we present a measure that can predict shared targets for drugs in DrugBank through large scale analysis of the biomedical literature. We show that using MeSH ontology terms can accurately describe the drugs and that appropriate use of the MeSH ontological structure can determine pairwise drug similarity. |
| format |
Objeto de conferencia Objeto de conferencia |
| author |
Caniza, Horacio Galeano, Diego Paccanaro, Alberto |
| author_facet |
Caniza, Horacio Galeano, Diego Paccanaro, Alberto |
| author_sort |
Caniza, Horacio |
| title |
Mining the biomedical literature to predict shared drug targets in drugbank |
| title_short |
Mining the biomedical literature to predict shared drug targets in drugbank |
| title_full |
Mining the biomedical literature to predict shared drug targets in drugbank |
| title_fullStr |
Mining the biomedical literature to predict shared drug targets in drugbank |
| title_full_unstemmed |
Mining the biomedical literature to predict shared drug targets in drugbank |
| title_sort |
mining the biomedical literature to predict shared drug targets in drugbank |
| publishDate |
2017 |
| url |
http://sedici.unlp.edu.ar/handle/10915/63201 http://www.clei2017-46jaiio.sadio.org.ar/sites/default/files/Mem/SLMDI/SLMDI-03.pdf |
| work_keys_str_mv |
AT canizahoracio miningthebiomedicalliteraturetopredictshareddrugtargetsindrugbank AT galeanodiego miningthebiomedicalliteraturetopredictshareddrugtargetsindrugbank AT paccanaroalberto miningthebiomedicalliteraturetopredictshareddrugtargetsindrugbank |
| bdutipo_str |
Repositorios |
| _version_ |
1764820480559153155 |