Mining the biomedical literature to predict shared drug targets in drugbank

The current drug development pipelines are characterised by long processes with high attrition rates and elevated costs. More than 80% of new compounds fail in the later stages of testing due to severe side-effects caused by unknown biomolecular targets of the compounds. In this work, we present a m...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Caniza, Horacio, Galeano, Diego, Paccanaro, Alberto
Formato: Objeto de conferencia
Lenguaje:Inglés
Publicado: 2017
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/63201
http://www.clei2017-46jaiio.sadio.org.ar/sites/default/files/Mem/SLMDI/SLMDI-03.pdf
Aporte de:
id I19-R120-10915-63201
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Ciencias Informáticas
MeSH terms
drug descriptors
drug targets
drugbank
spellingShingle Ciencias Informáticas
MeSH terms
drug descriptors
drug targets
drugbank
Caniza, Horacio
Galeano, Diego
Paccanaro, Alberto
Mining the biomedical literature to predict shared drug targets in drugbank
topic_facet Ciencias Informáticas
MeSH terms
drug descriptors
drug targets
drugbank
description The current drug development pipelines are characterised by long processes with high attrition rates and elevated costs. More than 80% of new compounds fail in the later stages of testing due to severe side-effects caused by unknown biomolecular targets of the compounds. In this work, we present a measure that can predict shared targets for drugs in DrugBank through large scale analysis of the biomedical literature. We show that using MeSH ontology terms can accurately describe the drugs and that appropriate use of the MeSH ontological structure can determine pairwise drug similarity.
format Objeto de conferencia
Objeto de conferencia
author Caniza, Horacio
Galeano, Diego
Paccanaro, Alberto
author_facet Caniza, Horacio
Galeano, Diego
Paccanaro, Alberto
author_sort Caniza, Horacio
title Mining the biomedical literature to predict shared drug targets in drugbank
title_short Mining the biomedical literature to predict shared drug targets in drugbank
title_full Mining the biomedical literature to predict shared drug targets in drugbank
title_fullStr Mining the biomedical literature to predict shared drug targets in drugbank
title_full_unstemmed Mining the biomedical literature to predict shared drug targets in drugbank
title_sort mining the biomedical literature to predict shared drug targets in drugbank
publishDate 2017
url http://sedici.unlp.edu.ar/handle/10915/63201
http://www.clei2017-46jaiio.sadio.org.ar/sites/default/files/Mem/SLMDI/SLMDI-03.pdf
work_keys_str_mv AT canizahoracio miningthebiomedicalliteraturetopredictshareddrugtargetsindrugbank
AT galeanodiego miningthebiomedicalliteraturetopredictshareddrugtargetsindrugbank
AT paccanaroalberto miningthebiomedicalliteraturetopredictshareddrugtargetsindrugbank
bdutipo_str Repositorios
_version_ 1764820480559153155