Comparison of Feature Extraction Methods and Predictors for Income Inference
Abstract—Patterns of mobile phone communications, coupled with the information of the social network graph and financial behavior, allow us to make inferences of users’ socio-economic attributes such as their income level. We present here several methods to extract features from mobile phone usage (...
Guardado en:
| Autores principales: | , , |
|---|---|
| Formato: | Objeto de conferencia |
| Lenguaje: | Inglés |
| Publicado: |
2017
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/63174 http://www.clei2017-46jaiio.sadio.org.ar/sites/default/files/Mem/AGRANDA/AGRANDA-06.pdf |
| Aporte de: |
| id |
I19-R120-10915-63174 |
|---|---|
| record_format |
dspace |
| institution |
Universidad Nacional de La Plata |
| institution_str |
I-19 |
| repository_str |
R-120 |
| collection |
SEDICI (UNLP) |
| language |
Inglés |
| topic |
Ciencias Informáticas Teléfono Celular aprendizaje automático método bayesiano |
| spellingShingle |
Ciencias Informáticas Teléfono Celular aprendizaje automático método bayesiano Fixman, Martín Minnoni, Martín Sarraute, Carlos Comparison of Feature Extraction Methods and Predictors for Income Inference |
| topic_facet |
Ciencias Informáticas Teléfono Celular aprendizaje automático método bayesiano |
| description |
Abstract—Patterns of mobile phone communications, coupled with the information of the social network graph and financial behavior, allow us to make inferences of users’ socio-economic attributes such as their income level. We present here several methods to extract features from mobile phone usage (calls and messages), and compare different combinations of supervised machine learning techniques and sets of features used as input for the inference of users’ income. Our experimental results show that the Bayesian method based on the communication graph outperforms standard machine learning algorithms using nodebased features. |
| format |
Objeto de conferencia Objeto de conferencia |
| author |
Fixman, Martín Minnoni, Martín Sarraute, Carlos |
| author_facet |
Fixman, Martín Minnoni, Martín Sarraute, Carlos |
| author_sort |
Fixman, Martín |
| title |
Comparison of Feature Extraction Methods and Predictors for Income Inference |
| title_short |
Comparison of Feature Extraction Methods and Predictors for Income Inference |
| title_full |
Comparison of Feature Extraction Methods and Predictors for Income Inference |
| title_fullStr |
Comparison of Feature Extraction Methods and Predictors for Income Inference |
| title_full_unstemmed |
Comparison of Feature Extraction Methods and Predictors for Income Inference |
| title_sort |
comparison of feature extraction methods and predictors for income inference |
| publishDate |
2017 |
| url |
http://sedici.unlp.edu.ar/handle/10915/63174 http://www.clei2017-46jaiio.sadio.org.ar/sites/default/files/Mem/AGRANDA/AGRANDA-06.pdf |
| work_keys_str_mv |
AT fixmanmartin comparisonoffeatureextractionmethodsandpredictorsforincomeinference AT minnonimartin comparisonoffeatureextractionmethodsandpredictorsforincomeinference AT sarrautecarlos comparisonoffeatureextractionmethodsandpredictorsforincomeinference |
| bdutipo_str |
Repositorios |
| _version_ |
1764820480538181637 |