Map-Reduce for Processing GPS Data from Public Transport in Montevideo, Uruguay
This article addresses the problem of processing large volumes of historical GPS data from buses to compute quality-of-service metrics for urban transportation systems. We designed and implemented a solution to distribute the data processing on multiple processing units in a distributed computing in...
Guardado en:
| Autores principales: | , , , |
|---|---|
| Formato: | Objeto de conferencia |
| Lenguaje: | Inglés |
| Publicado: |
2016
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/56810 http://45jaiio.sadio.org.ar/sites/default/files/AGRANDA-01.pdf |
| Aporte de: |
| id |
I19-R120-10915-56810 |
|---|---|
| record_format |
dspace |
| institution |
Universidad Nacional de La Plata |
| institution_str |
I-19 |
| repository_str |
R-120 |
| collection |
SEDICI (UNLP) |
| language |
Inglés |
| topic |
Ciencias Informáticas map-reduce big data intelligent transportation systems |
| spellingShingle |
Ciencias Informáticas map-reduce big data intelligent transportation systems Massobrio, Renzo Pías, Andrés Vázquez, Nicolás Nesmachnow, Sergio Map-Reduce for Processing GPS Data from Public Transport in Montevideo, Uruguay |
| topic_facet |
Ciencias Informáticas map-reduce big data intelligent transportation systems |
| description |
This article addresses the problem of processing large volumes of historical GPS data from buses to compute quality-of-service metrics for urban transportation systems. We designed and implemented a solution to distribute the data processing on multiple processing units in a distributed computing infrastructure. For the experimental analysis we used historical data from Montevideo, Uruguay. The proposed solution scales properly when processing large volumes of input data, achieving a speedup of up to 22× when using 24 computing resources.
As case studies, we used the historical data to compute the average speed of bus lines in Montevideo and identify troublesome locations, according to the delay and deviation of the times to reach each bus stop. Similar studies can be used by control authorities and policy makers to get an insight of the transportation system and improve the quality of service. |
| format |
Objeto de conferencia Objeto de conferencia |
| author |
Massobrio, Renzo Pías, Andrés Vázquez, Nicolás Nesmachnow, Sergio |
| author_facet |
Massobrio, Renzo Pías, Andrés Vázquez, Nicolás Nesmachnow, Sergio |
| author_sort |
Massobrio, Renzo |
| title |
Map-Reduce for Processing GPS Data from Public Transport in Montevideo, Uruguay |
| title_short |
Map-Reduce for Processing GPS Data from Public Transport in Montevideo, Uruguay |
| title_full |
Map-Reduce for Processing GPS Data from Public Transport in Montevideo, Uruguay |
| title_fullStr |
Map-Reduce for Processing GPS Data from Public Transport in Montevideo, Uruguay |
| title_full_unstemmed |
Map-Reduce for Processing GPS Data from Public Transport in Montevideo, Uruguay |
| title_sort |
map-reduce for processing gps data from public transport in montevideo, uruguay |
| publishDate |
2016 |
| url |
http://sedici.unlp.edu.ar/handle/10915/56810 http://45jaiio.sadio.org.ar/sites/default/files/AGRANDA-01.pdf |
| work_keys_str_mv |
AT massobriorenzo mapreduceforprocessinggpsdatafrompublictransportinmontevideouruguay AT piasandres mapreduceforprocessinggpsdatafrompublictransportinmontevideouruguay AT vazqueznicolas mapreduceforprocessinggpsdatafrompublictransportinmontevideouruguay AT nesmachnowsergio mapreduceforprocessinggpsdatafrompublictransportinmontevideouruguay |
| bdutipo_str |
Repositorios |
| _version_ |
1764820477617897475 |