Vector-based word representations for sentiment analysis: a comparative study

New applications of text categorization methods like opinion mining and sentiment analysis, author profiling and plagiarism detection requires more elaborated and effective document representation models than classical Information Retrieval approaches like the Bag of Words representation. In this co...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Villegas, María Paula, Garciarena Ucelay, María José, Fernández, Juan Pablo, Álvarez Carmona, Miguel A., Errecalde, Marcelo Luis, Cagnina, Leticia
Formato: Objeto de conferencia
Lenguaje:Inglés
Publicado: 2016
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/56763
Aporte de:
id I19-R120-10915-56763
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Ciencias Informáticas
text mining
word-based representations
text categorization
movie reviews
sentiment analysis
spellingShingle Ciencias Informáticas
text mining
word-based representations
text categorization
movie reviews
sentiment analysis
Villegas, María Paula
Garciarena Ucelay, María José
Fernández, Juan Pablo
Álvarez Carmona, Miguel A.
Errecalde, Marcelo Luis
Cagnina, Leticia
Vector-based word representations for sentiment analysis: a comparative study
topic_facet Ciencias Informáticas
text mining
word-based representations
text categorization
movie reviews
sentiment analysis
description New applications of text categorization methods like opinion mining and sentiment analysis, author profiling and plagiarism detection requires more elaborated and effective document representation models than classical Information Retrieval approaches like the Bag of Words representation. In this context, word representation models in general and vector-based word representations in particular have gained increasing interest to overcome or alleviate some of the limitations that Bag of Words-based representations exhibit. In this article, we analyze the use of several vector-based word representations in a sentiment analysis task with movie reviews. Experimental results show the effectiveness of some vector-based word representations in comparison to standard Bag of Words representations. In particular, the Second Order Attributes representation seems to be very robust and effective because independently the classifier used with, the results are good.
format Objeto de conferencia
Objeto de conferencia
author Villegas, María Paula
Garciarena Ucelay, María José
Fernández, Juan Pablo
Álvarez Carmona, Miguel A.
Errecalde, Marcelo Luis
Cagnina, Leticia
author_facet Villegas, María Paula
Garciarena Ucelay, María José
Fernández, Juan Pablo
Álvarez Carmona, Miguel A.
Errecalde, Marcelo Luis
Cagnina, Leticia
author_sort Villegas, María Paula
title Vector-based word representations for sentiment analysis: a comparative study
title_short Vector-based word representations for sentiment analysis: a comparative study
title_full Vector-based word representations for sentiment analysis: a comparative study
title_fullStr Vector-based word representations for sentiment analysis: a comparative study
title_full_unstemmed Vector-based word representations for sentiment analysis: a comparative study
title_sort vector-based word representations for sentiment analysis: a comparative study
publishDate 2016
url http://sedici.unlp.edu.ar/handle/10915/56763
work_keys_str_mv AT villegasmariapaula vectorbasedwordrepresentationsforsentimentanalysisacomparativestudy
AT garciarenaucelaymariajose vectorbasedwordrepresentationsforsentimentanalysisacomparativestudy
AT fernandezjuanpablo vectorbasedwordrepresentationsforsentimentanalysisacomparativestudy
AT alvarezcarmonamiguela vectorbasedwordrepresentationsforsentimentanalysisacomparativestudy
AT errecaldemarceloluis vectorbasedwordrepresentationsforsentimentanalysisacomparativestudy
AT cagninaleticia vectorbasedwordrepresentationsforsentimentanalysisacomparativestudy
bdutipo_str Repositorios
_version_ 1764820477566517250