Handshape recognition for Argentinian Sign Language using ProbSom

Automatic sign language recognition is an important topic within the areas of human-computer interaction and machine learning. On the one hand, it poses a complex challenge that requires the intervention of various knowledge areas, such as video processing, image processing, intelligent systems and...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ronchetti, Franco, Quiroga, Facundo, Estrebou, César Armando, Lanzarini, Laura Cristina
Formato: Articulo
Lenguaje:Inglés
Publicado: 2016
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/52376
http://journal.info.unlp.edu.ar/wp-content/uploads/2015/10/JCST-42-Paper-1.pdf
Aporte de:
id I19-R120-10915-52376
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Ciencias Informáticas
radon transform
handshape recognition
Lenguaje de Signos
spellingShingle Ciencias Informáticas
radon transform
handshape recognition
Lenguaje de Signos
Ronchetti, Franco
Quiroga, Facundo
Estrebou, César Armando
Lanzarini, Laura Cristina
Handshape recognition for Argentinian Sign Language using ProbSom
topic_facet Ciencias Informáticas
radon transform
handshape recognition
Lenguaje de Signos
description Automatic sign language recognition is an important topic within the areas of human-computer interaction and machine learning. On the one hand, it poses a complex challenge that requires the intervention of various knowledge areas, such as video processing, image processing, intelligent systems and linguistics. On the other hand, robust recognition of sign language could assist in the translation process and the integration of hearingimpaired people. This paper offers two main contributions: first, the creation of a database of handshapes for the Argentinian Sign Language (LSA), which is a topic that has barely been discussed so far. Secondly, a technique for image processing, descriptor extraction and subsequent handshape classification using a supervised adaptation of self-organizing maps that is called ProbSom. This technique is compared to others in the state of the art, such as Support Vector Machines (SVM), Random Forests, and Neural Networks. The database that was built contains 800 images with 16 LSA conjurations, and is a first step towards building a comprehensive database of Argentinian signs. The ProbSom-based neural classifier, using the proposed descriptor, achieved an accuracy rate above 90%.
format Articulo
Articulo
author Ronchetti, Franco
Quiroga, Facundo
Estrebou, César Armando
Lanzarini, Laura Cristina
author_facet Ronchetti, Franco
Quiroga, Facundo
Estrebou, César Armando
Lanzarini, Laura Cristina
author_sort Ronchetti, Franco
title Handshape recognition for Argentinian Sign Language using ProbSom
title_short Handshape recognition for Argentinian Sign Language using ProbSom
title_full Handshape recognition for Argentinian Sign Language using ProbSom
title_fullStr Handshape recognition for Argentinian Sign Language using ProbSom
title_full_unstemmed Handshape recognition for Argentinian Sign Language using ProbSom
title_sort handshape recognition for argentinian sign language using probsom
publishDate 2016
url http://sedici.unlp.edu.ar/handle/10915/52376
http://journal.info.unlp.edu.ar/wp-content/uploads/2015/10/JCST-42-Paper-1.pdf
work_keys_str_mv AT ronchettifranco handshaperecognitionforargentiniansignlanguageusingprobsom
AT quirogafacundo handshaperecognitionforargentiniansignlanguageusingprobsom
AT estreboucesararmando handshaperecognitionforargentiniansignlanguageusingprobsom
AT lanzarinilauracristina handshaperecognitionforargentiniansignlanguageusingprobsom
bdutipo_str Repositorios
_version_ 1764820475797569538