Distances in probability space and the statistical complexity setup

Statistical complexity measures (SCM) are the composition of two ingredients: (i) entropies and (ii) distances in probability-space. In consequence, SCMs provide a simultaneous quantification of the randomness and the correlational structures present in the system under study. We address in this rev...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Kowalski, Andrés, Martín, María Teresa, Plastino, Ángel Luis, Rosso, Osvaldo A., Casas, Montserrat
Formato: Articulo
Lenguaje:Inglés
Publicado: 2011
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/38178
http://www.mdpi.com/1099-4300/13/6/1055
Aporte de:
Descripción
Sumario:Statistical complexity measures (SCM) are the composition of two ingredients: (i) entropies and (ii) distances in probability-space. In consequence, SCMs provide a simultaneous quantification of the randomness and the correlational structures present in the system under study. We address in this review important topics underlying the SCM structure, viz., (a) a good choice of probability metric space and (b) how to assess the best distance-choice, which in this context is called a "disequilibrium" and is denoted with the letter Q. Q, indeed the crucial SCM ingredient, is cast in terms of an associated distance D. Since out input data consists of time-series, we also discuss the best way of extracting from the time series a probability distribution P. As an illustration, we show just how these issues affect the description of the classical limit of quantum mechanics.